

About MIDAS IT

MIDAS ITは、工学技術用ソフトウェア開発および普及、そして構造分野のエンジニアリングサービスとウェブビジネス統合 ソリューションを提供する会社です。

2000年9月に設立、現在は約600名のグローバル専門技術者が在籍し、日本、アメリカ、中国、インド、ロシア、イギリス、 ドバイ、シンガポールの現地法人や35ヶ国の代理店など、全世界ネットワークを通し、110ヶ国に工学技術用ソフトウェアを 販売する世界的な企業として成長しました。

また、技術者の皆様の技術力向上のために各分野別に技術講座を実施しており、今後もこのような技術講座を定期的に 開催していきたいと考えております。

このようなセミナーに是非ともご参加頂けますようお願い申し上げます。

Japan Pavilion (Shanghai EXPO)

Burj Khalifa (UAE)

Wooden Gymnasium (Japan)

AGENDA

Session 1

重力式岸壁モデルを用いたモデリングと結果表示の体験操作

Session 2

効率的なメッシュの変更と修正方法の紹介

Session 3

質疑応答

2017 MIDAS FEM TECHNICAL EDUCATION SEMIINAR

入力項目の日本語化

- 材料・構造特性など全ての入力項目を日本語化
- FLIPデータカードの変数名を知らなくても入力項目の機能が直観的に分かる

ID	名称	ID 1 名称 埋土(地下水面上)	2		
1	埋土(地下水	モデル練習	-	PDR 結みら入る	-
2	埋土				
3	原地盤	一般パラメーター			
4	ケーソン	ポアソン比(v)	0.33		
0	/4	単位体積重量(y)	17.65	kN/m3	
		平均有効拘束圧(gma')	98	kN/m2	
		 深度パラメータ(FVVG) 			-
		初期せん断爾州生(Gma)	84494.9	kN/m2	
		パラメータ(mG)	0.5		
		体積弾性係数(Kma)	220349.5	kN/m2	
		パラメータ(mK)	0.5		
		 深度パラメータ(IVVC) 			7
		粘着力(C)	0	kN/m2	
		内部摩擦角(φf)	39.67	[deg]	- F
		マルチスプリング 1/4円当たりのバネ数	6		•
		間隙率(n)	0.45		
		間隙水の体積弾性係数(WKf)	2200000	kN/m2	
		□ 液状化パラメータ			7
		塑性せん断仕事の(-)ダイレイタンシー寄与	tmp7モード 👻		-
		✓ 初期せん断開作の評価(C, φ利用)			
		✓ 隣接ジョイントのせん断強度参照			
		奥行き方向の幅	0	m	
		参照基準変位のステップ	0		
		ガウスの求積法の次数	2 🔻		
		SRI法次数	1 🔻		
		✓ Ymin(自動計算(FAABB)	0	m	
2018	Bile	() Setter	(87E) 8(8		11-2
下刀共	nic.		PSIE HUS	F 64	00

ポアソン比(v)	0.33	
単位体積重量(γ)	17.65	kN/m3
平均有効拘束圧(oma')	98	kN/m2
□ 深度パラメータ(FVVG)		
初期せん断剛性(Gma)	84494.9	kN/m2
パラメータ(mG)	0.5	
体積弾性係数(Kma)	220349.5	kN/m2
パラメータ(mK)	0.5	
□ 深度パラメータ(IVVC)		
粘着力(C)	0	kN/m2
内部摩擦角(φf)	39.67	[deg]
マルチスプリング1/4円当たりのバネ数	6	
間隙率(n)	0.45	
間隙水の体積弾性係数(WKf)	2200000	kN/m2
□ 液状化パラメータ		
塑性せん断仕事の(-)ダイレイタンシー寄与	tmp7モード 👻	
☑ 初期せん断剛性の評価(C, φ利用)		
✓隣接ジョイントのせん断強度参照		

マルチスプリング要素の定義項目

2017 MIDAS FEM TECHNICAL EDUCATION SEMIINAR

梁部材剛性の自動計算

断面DBから線形はりの剛性を自動計算: 断面積、断面2次モーメント、有効せん断面積率など
 線形剛性を用いた、非線形はりの剛性や耐力を自動計算、耐力曲線の表示

製品の概要

2017 MIDAS FEM TECHNICAL EDUCATION SEMIINAR

様々な連携解析の設定

- 様々な連動解析が簡単に定義できる

 液状化解析、静的と地震応答との連携、築堤解析と他の解析との連携など
- 解析セットの設定後に「解析実行」ボタンから、そのままFLIP計算

製品の概要

2017 MIDAS FEM TECHNICAL EDUCATION SEMIINAR

多彩な結果表示

- ・ 結果ツリーから該当の結果項目をダブルクリックして結果図表示(変形、コンター、ベクトルなど)
- 結果テーブルからMS Excelへ書き出し → グラフ作成

2017 MIDAS FEM TECHNICAL EDUCATION SEMIINAR

既存ファイルの読み込み

- 以前の解析結果やDOS上で直接実行した結果ファイルの読み込み可能
 -時刻歴(*.24)、履歴(*.25)、時系列結果(*.32-39)の読み込み
- 施工段階結果や複数の解析結果の読み込み可能

画面構成と操作方法

2017 MIDAS FEM TECHNICAL EDUCATION SEMIINAR

設計者や解析初心者の方でも簡単に実務解析が行えるように便利、かつ簡潔な作業環境

日本語入力について

- 1. 半角、英字、数字入力
 - :「半角/全角 漢字」 ボタンで切り替えてください。
- 2.ひらがな、カタカナ入力

 「カタカナ/ひらがな」ボタンをダブルクリックして、切り替えてください。

Session 1

2017 MIDAS FEM TECHNICAL EDUCATION SEMIINAR

※1 弾性係数の値である

解析条件

≻ 地盤物性

原地盤および埋土の地盤物性を以下に示します。

			表1 地	盤モデルの物性値			単位 : kN, m
材料番号	材料名	単位 重量	初期せん断剛性 (Gma)	体積弾性係数 (Kma)	基準拘束圧 (σma')	ポアソン比	内部摩擦角
1	埋土 (地下水面上)	17.7	84,494.9	220,349.5	98	0.33	39.67
2	埋土	19.6	84,494.9	220,349.5	98	0.33	39.67
3	原地盤	19.6	131,292.4	342,390.1	98	0.33	41.38
4	ケーソン	22.5	2.5×10 ^{7%1}	-	-	0.20	-

▶ 境界条件

> 地震応答解析の粘性境界

01 プログラムの起動

2017 MIDAS FEM TECHNICAL EDUCATION SEMIINAR

2 形状の読み込み

03 材料の定義

2017 MIDAS FEM TECHNICAL EDUCATION SEMIINAR

04 線の交差分割

作業手順 🞽 🖬 モデル 荷重|境界条件 解析 結果 1 ソール [モデル]-[マップドメッシュ] クリック 😓 🚄 🔡 👹 🕌 節点座標系変更 🍦 テーブル 🔐 マップドメッシュ 🛁 サイズ指定 🚽 節点生成 コマンドキー:"mm" 🋐 サイズ情報コピー ◇ 整列/移動/コピー 📫 節点リナンバー ■計 押し出しメッシュ 要素分割 2) オブジェクト選択:線で閉じている領域 87-5 ☆自由節点の削除 属性 節点 3 左図を参照し、4つのエッジを選択 マップドメッシュ ④ メッシュサイズ:"分割間隔"、"不等間隔" オブジェクト選択 ◎ 線で開じている領域 画 ③ H:**"4" m**, V: **"2" m** 3 線の選択 [4] **•** 5 地盤物性: "5:海" メッシュセット名が 4つの角を選択 ? 材料名に自動変更される メッシュサイズ ◎ 分割間隔 ◎ 分割数 6 [同じメッシュセット名は新しく登録] 4 不等間隔 ◎ 等間隔 チェックオフ н 4 m 2 m v ⑦ [適用] ボタンクリック 地盤物性5 3 5 海 メッシュセット 海 同じメッシュセット名は新しく登録 📄 高次要素生成 面に適用された材料を使用 ▼ メッシュセット別に登録 ок 開じる 適用 7 19

05 要素生成-2

05 要素生成-1

作業手順 マップドメッシュ 左図を参照し、7つのエッジを選択 オブジェクト選択 ◎ 線で閉じている領域 () 面 2) 地盤物性: "4:ケーソン" -(1 線の選択 [7] 3 [適用] ボタンクリック ? 4つの角を選択 z ④ 左図を参照し、4つのエッジを選択 メッシュサイズ 4 1 ◎ 分割間隔 ◎ 分割数 5) 地盤物性:"1:埋土(地下水面上)" ◎ 等間隔 ◎ 不等間隔 6 [適用] ボタンクリック 1 н 4 m v 2 m 7 左図を参照し、4つのエッジを選択 地盤物性 8 地盤物性: "2:埋土" 2~8 4 ケーソン 9 [適用] ボタンクリック メッシュセット ケーソン 📄 同じメッシュセット名は新しく登録 □ 高次要素生成 面に適用された材料を使用 🔽 メッシュセット別に登録 ок 開ける 🇃 3 9 20

05 要素生成-3

2017 MIDAS FEM TECHNICAL EDUCATION SEMIINAR

06 水位線の定義、変位拘束

07 粘性境界の定義

2017 MIDAS FEM TECHNICAL EDUCATION SEMIINAR

08 流体−構造連成面の定義

09 ジョイント属性の定義-1

2017 MIDAS FEM TECHNICAL EDUCATION SEMIINAR

09 ジョイント属性の定義-2

09 ジョイント属性の定義-3

2017 MIDAS FEM TECHNICAL EDUCATION SEMIINAR

名称: "joint-h" 入力 粘着力(C): "0" 摩擦角(φ): "31" 参照基準変位のステップ(せん断力): "1" 参照基準変位のステップ(世ん断力): "1" [追加] ボタンクリック 構造 (境界要素の定義) 「クター・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	森林: "joint-h"入力 満力(C): "0" 探角(φ): "31" 「照基準変位のステップ(せん断力): "1" 「加速素種類 ジョイント・ 要未毎別 アイソパラメトリックはつ ・ 「クク」 「ひ 5 名称 point-h. 要未毎別 アイソパラメトリックはつ ・ 「クク」 「日本価方向の初期即性(Ks) 1000000 ② n3 垂直方向の利期的性(Ks) 1000000 ③ n3 垂直方向の利期的性(Ks) 1000000 ③ n3 垂直方向の利期的性(Ks) 1000000 ④ n3 垂直方向の利期的性(Ks) 1000000 ④ n3 垂直方向の利期的性(Ks) 1000000 ④ n3 垂直方向の利期的性(Ks) 1000000 ④ n3 「一般 1000000 ④ n3 「日本価方向の利期的性(Ks) 1000000 ④ n3 「日本価方向の利用的性(Ks) 1000000 ④ n3 「日本価有方向の利用的性(Ks) 1000000 ④ n3 「日本価有方向利用的性(Ks) 1000000 ④ n3 「日本価有方向利用の性(Ks) 1000000 ④ n3 「日本価有有有有有方向利用の性(Ks) 1000000 ④ n3 「日本価有有有有有有有有有有有有有有有有有有有有有有有有有有有有有有有有有有有有	作業手順				
粘着力(C): "O" 摩擦角(φ): "31" 参照基準変位のステップ(せん断力): "1" 参照基準変位のステップ(垂直): "1" [jeinol ポタンクリック	データ 「データ 「 「 「	】名称: "joint-h" 入力	構造/境界要素の定義			×
摩擦角(φ): "31" 参照基準変位のステップ(せん断力): "1" 参照基準変位のステップ(垂直): "1" [追加] ボタンクリック		】粘着力(C): "0"	データ ID 名称	一般 ID 5 名称 joint-h		
参照基準変位のステップ(せん断力): "1" 参照基準変位のステップ(垂直): "1" [iabn] ボタンクリック (5) (1000000000000000000000000000000000000	・照基準変位のステップ(せん断力): "1" ・ 「「」」」」」 ・ 「「」」」」」 ・ 「」」」」 ・ 「」」」」 ・ 「」」 ・ 「」 ・ 「」」 ・ 「」」 ・ 「」」 ・ 「」」 <p< td=""><th>摩擦角(φ):"31"</th><td>3 joint-st 4 joint-dy</td><td>要素種類 ジョイント 👻</td><td>要素種別 アイソパラメトリックはり</td><td>-</td></p<>	摩擦角(φ): "31"	3 joint-st 4 joint-dy	要素種類 ジョイント 👻	要素種別 アイソパラメトリックはり	-
参照基準変位のステップ(垂直): "1" [追加] ボタンクリック 単直方向の初期間性(sn) 1000000 1 日本市方(の利期間性(sn) 1000000 1 日本市方(の利期間性(sn) 1000000 1 日本市方(の利期間性(sn) 1000000 1 日本市方(の利期間性(sn) 1000000 1 日本市方(の利用間性(sn) 1000000 1 日本市方(の利用間性(sn) 1 1 日本市方(sn) 1 1 1 1	#照基準変位のステップ(垂直): "1" 自加] ボタンクリック 単直応力の計算方法 単度で力の計算方法 単度で力の計算方法 単規甲型基本 「Mimの目動計算(FAABB) AA BB 0 kN/m2 内部摩擦角((0) 31 (deg] 単直応力の計算方法 単規甲型基本 「Mimの目動計算(FAABB) AA BB 0 kN/m2 0 m 単直応力の計算方法 単規甲型基本 1 レーレーン減衰 要素別 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	参照基準変位のステップ(せん断力):"1"		パラメータ せん断方向の初期間性+(Ks)	1000000 m 3	
Zimar+g(monor) (主国) ・ 1 [jiām] ボタンクリック [jiām] [jiām] [jiām]	Kita レージ - 液酸 Ali レージ 液酸 Ali レージ	参昭基進枩位のステップ(垂直)・"1"		垂直方向の初期剛性(Kn)	1000000 2h3	
[16]加] ホタングリック 単行き方向の幅 0 m 垂直で力の計算方法 時度平面原素 → 「YminO 自動計算 (FAAB6) AA 0 kM/m2 BB 参照茎準変位のステップ(比ん 1) 参照茎準変位のステップ(比ん 1) シーレーン滅衰 夏素別 → 0 月 0 月 0 月 0 月 0 月 0 月 0 月 0 月				粘者力(C) 内部摩擦角(φ)	0 kN/m2 31 [deg]	
		「「追加」ホタンクリック		奥行き方向の幅	0 m	
(mino) 目 別) 計算 (rAde(b) (A) (A) (A) (B8 (C) (A) (C) (A) (A) (C) (A) (A	TIMIO 目 別計算 (FAGB) AA A A A A A B C S			垂直応力の計算方法	隣接平面要素 ▼	
BB 参照基準変位のステップ(せん 参照基準変位のステップ(世ん を照基準変位のステップ(世ん を展基準要位のステップ(世ん を原語)を示いていた。 を見また。 を の を の を の を の を の の の の の の の の の の	BB C C S C S				0 kN/m2	
参照基準変位のステック(せん 参照基準変位のステック(単位 レーレー波線 ロ ロ 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	参照基準要位のステック(地ん			BB	0 m3	
参照基準変位のステップ(価値 レーレー滅衰 要素別▼ □				参照基準変位のステップ(せん		
				参照基準変位のステップ(垂直	1	<pre>c</pre>
					女死別▼ 0	
			PJJMR/L		U 811 (1990)	5

10 ジョイント要素の作成

2017 MIDAS FEM TECHNICAL EDUCATION SEMIINAR

27

ジョイント要素の特性変更 🚔 🔒 作業手順 荷重|境界条件 解析 幾何形状 結果 モデル 10 [select filter] を [1D要素] に変更 🔡 マップドメッシュ 🚔 サイズ指定 , 節点生成 -2) メッシュセットから「Joint-MPC」、「Joint-オートメッシュ 🖽 直交メッシュ 🏹 サイズ情報コピー ◇ 整列/移動/コピー 📫 地盤物性 構造特性 物性テーブル 📑 押し出しメッシュ · マージ MPC-Branch」 チェックオフ 要素分割 属性 3)作業画面からマウスで囲んで、ジョイント i∩ - ∩ - , i 🔻 - 💁 🖕 i 🔮 , i 📚 base 🗸 📝 1D要素 - I 🕞 🔂 📐 📯 I 🏵 🚽 要素(2個)を選択 🖻 🖉 🔛 メッシュセット [12] メッシュセットから[構造特性]-[5:joint-h] 🗄 😹 属性 - 🗹 🛒 base (要素[0], 節点[0]) 🖌 🛒 海 (要素[32], 節点[45]) 🗉 🌄 地盤物性 をクリックし、作業画面にドラッグアンドド 🕢 🛒 ケーソン (要素[10], 節点[18]) 白… 🔽 🛃 構造特性 🗹 🛒 埋土(地下水面上) (要素[10]. ロップ 🕮 🔽 🎿 1米粘性境界[粘性境界] 🖌 🛒 埋土 (要素[40], 節点[55]) 🔽 🛒 原地盤 (要素[80], 節点[105]) 🖻 🛛 🛃 2:流体-構造連成面 2[流体構 ☑ 🛒 側方粘性 (要素[13], 節点[15] 🗄 🔽 🛃 3:joint-st[Joint] 🗹 🛒 底面粘性 (要素[20], 節点[21 🕢 🛒 流体構造連成 (要素[12], 節, 🗌 🚄 5:joint-h[Joint] ✔ 🛒 Joint (要素[7], 節点[16])] 🛒 Joint-MPC (要素[7], 節点[14 2] 🛒 Joint-MPC-Branch (要素[1], (3)

29

12 ジョイント要素の属性変更

13 地震波の定義

作業手順 荷重|境界条件 解析 1) [荷重|境界条件] - [地震波関数] 🕌 🎰 拘束条件 🔰 한 節点荷重 🕂 テーブル 🔹 22 fr 2 Smart 🔁 属性変更 自重 🗄 圧力 アイコンクリック 地震波関数 地盤加速度 水位線 ≟↓ 強制変位 Support 🎂 テーブル コマンドキー:"sf" 静的荷重 水位線 境界 2 [読み込み...] ボタンクリック 時間関称デー 4項 ② 正弦波 ⑦ スケール ③ スケール系数 000 ◎ 最大値 3) ファイル形式: "利用者指定形式 2" 名称 mave? 名称 wave 2 加振波 0 m/sec2 観測波.. ④ [🤤 (ファイル経路)アイコンクリック 時間(秒) 加速度 m/sec2 📋 9.00 7.78 6.9 0.0000 -2.3127 -2.1272 -1.9412 -1.7540 Tutorialsフォルダにある"wave2.wve"選 • 0 0.0100 0.0200 0.0300 0.0400 0.0500 3.94 2.66 1.35 I/sec2 択 加速度 1.5649 5 加速度データの個数(ND): "1000" -1.3734 -1.1793 -0.9826 -0.7839 0.0600 0.0700 0.0800 0.1000 0.1000 0.1100 0.1200 0.1300 0.1400 6 [読み込み] ボタンクリック -0.5841 -0.3842 時間(秒) ⑦ スケール係数: " 0.01" 0.1856 0.0104 0.2029 8 追加 修正 削除 8 [追加] ボタンクリック 開 9 [閉じる] ボタンクリック 地震波関数の読み込み ---- 🔆 3 ファイル形式 利用者指定形式 2 4 ファイル経路 I¥SoilWorks¥Seminar¥FLIP¥wave2.wve 🙀 データ形式はデフォルトで、利用者指定 データ形式 形式1が加速度だけのデータで、利用者 18, 8X, 18, 8X, F15.8 データ形式 (FRM1) 指定形式2が時間と加速度のデータと F7.2, 2X, F11.4 データ形式 (FRM2) なっています。ただし、データ形式の 読み飛ばしレコード数(NSKIP) フォーマットは自由に変更ができ、読み 1000 5 加速度データの個数(ND) 込む波ファイルの形式に合わせて変更 読み込み 6 閉じる することができます。 31

14 地盤加速度の適用

2017 MIDAS FEM TECHNICAL EDUCATION SEMIINAR

2017 MIDAS FEM TECHNICAL EDUCATION SEMIINAR

32

5 出力節点の定義

2017 MIDAS FEM TECHNICAL EDUCATION SEMIINAR

16 出力要素の定義

7 初期自重解析用の施工段階定義

2017 MIDAS FEM TECHNICAL EDUCATION SEMIINAR

http://jp.midasuser.com/geotech | 21

18 解析ケースの定義 - 初期自重解析 201

19 解析ケースの定義 - 地震応答解析

21 解析実行

22 結果ファイルの読み込み

2017 MIDAS FEM TECHNICAL EDUCATION SEMIINAR

23 結果ファイルの読み込み

24 結果表示>相対変位

2017 MIDAS FEM TECHNICAL EDUCATION SEMIINAR

25 結果表示>変形図、DWGへ書き出し

│ 結果表示>時刻歴/履歴グラフ

Session 2

効率的なメッシュの変更と修正方法の紹介

メッシュ生成 (1/4)

- •ファイルを開く
 - ¥1_メッシュ作成¥Mesh.sflip

2017 MIDAS FEM TECHNICAL EDUCATION SEMIINAR

メッシュ生成 (2/4)

- 交差点分割 ([幾何形状]-[編集]-[交差点分割])
 - 重なった線を交差点位置で分割する

メッシュ生成 (3/4) • メッシュ生成 ([モデル]-[要素分割]-[オートメッシュ]) 線で囲われた領域を1つの要素としてメッシュ生成する オブジェクト 荷重 | 境界条件 結果 ◎ 線で閉じている領域 モデル 画 ③ 🕆 マップドメッシュ 🛁 サイズ指定 線の選択 1 ? 内部点の選択 꿏 サイズ情報コピー 曾 直交メッシュ 地盤物性 構造特性 物性テーブル ・トメッシュ メッシュサイズ # 押し出しメッシュ ◎ 分割間隔 ◎ 分割 要素分割 地盤物性 - 🔊 2 埋土-1 メッシュセット 埋土-1 📄 同じメッシュセット名は新しく登録 マウスの左ボタンを押しながら 追加オブショ モデル全体が入るように囲う ☑ 内部領域にメッシュを生成 📝 内部線を含む 「一面に適用さ OK 閉じる 適用 50

2017 MIDAS FEM TECHNICAL EDUCATION SEMIINAR

メッシュ生成 (4/4)

- メッシュの確認 ([モデル]-[オブジェクト情報]-[シュリンク表示])
 - 作成したメッシュをシュリンク表示する

モデリングのヒント

- •Q:部分的に地盤特性を変更したいのですが?
 - ▲:新しい地盤特性を割り当てたい場合には、①新たに地盤 特性を作成します。②画面から要素を選択します。③[作業 ウィンドウ]から①で作成した地盤物性を選択し、画面内に ドラッグアンドドロップします。

52

メッシュ編集(1/3)

- •ファイルを開く
 - ・¥1_整列・移動¥整列・移動.sflip

メッシュ編集(2/3)

- 節点の整列 ([モデル]-[節点]-[整列/移動/コピー])
 - 位置のずれた節点を基準位置に整列する

よき特性 物性テーブル 異性 オートメ			
---------------------------	--	--	--

メッシュ編集(3/3)

- 節点の整列 ([モデル]-[節点]-[整列/移動/コピー])
 - 位置のずれた節点を基準位置に整列する

モデリングのヒント

- •メッシュ編集(1/4)
 - メッシュ位置の整列・移動 ([モデル]-[節点]-[整列/移動/コピー])
 - 複数の節点を任意のX位置、Z位置に整列
 - 節点を任意の位置に移動

モデリングのヒント

- メッシュ編集 (2/4)
 - 要素分割([モデル]-[節点]-[整列/移動/コピー])
 - 任意の分割数で複数の要素を等分
 - 選択したパターンで要素を分割

56

モデリングのヒント

- ・メッシュ編集(3/4)
 - 解析領域の拡大 ([モデル]-[要素分割]-[押し出しメッシュ])
 - 解析領域の境界を利用してメッシュを追加

2017 MIDAS FEM TECHNICAL EDUCATION SEMIINAR

モデリングのヒント

- メッシュ編集 (4/4)
 - メッシュの削除とメッシュの追加
 - 部分的にメッシュを削除し、異なるパターンのメッシュ 生成

58

テーブル機能の活用(1/3)

Soilworks for FLIPに搭載されたテーブル機能を用いることで、デフォルトの機能では、作成できないエンティティを手作業 によって作成することができます。

テーブルは、コピー&ペーストによるデータの修正も可能ですので、表計算ソフトで作成したデータを一括して貼り付けるといった作業もでき、効率的なエンティティ作成を行うことも可能です。

テーブル機能は、節点、要素ごとに搭載されており、節点テーブルは、[モデル]-[節点]-[テーブル]コマンド、要素テーブルは、 [モデル]-[要素]-[テーブル]コマンドで起動することができます。

2017 MIDAS FEM TECHNICAL EDUCATION SEMIINAR

テーブル機能の活用(2/3)

- 節点テーブル ([モデル]-[節点]-[テーブル])
 - 節点テーブルで選択した節点を確認する

テーブル機能の活用(3/3)

- 要素テーブル ([モデル]-[節点]-[テーブル])
 - 要素テーブルで選択した要素を確認する

	ID	Attri	ibute	Туре		Node1	Node2	Node3	Node4	Node5	Noc	7
•	1	海		四角形		1	6	7	2			↓
<u> </u>	2	海		四角形		2	7	8	3			
	3	海		四角形		3	8	9	4			
	4	海		四角形		4	9	10	5			
-	5	海	•	四角形	-	6	11	12	7			
-	6	海	•	四角形	-	7	12	13	8			
	7	海		四角形	-	8	13	14	9			
	8	海	•	四角形		9	14	15	10			
	9	海	•	四角形		11	16	17	12			
	10	海	•	四角形	-	12	17	18	18			
	11	海	-	四角形	-	13	18	19	14			
	12	海	•	四角形	-	14	19	20	15			
	13	海	•	四角形		16	21	22	17			
	14	海	•	四角形		17	22	23	18			
_	15	海	•	四角形	•	18	23	24	19			
_	16	海	*	四用形	-	19	24	25	20			
-	17	17 4		四角形		21	20	21	22			
	18)##	•	四月形		22	21	28	23			
Iodali	dass 1D	2D Joi	int MP	С								=== 👽 🗹 👽 🗵 Senstive Ş. 23 10) H≠
												ID Attribute Type Rodat Method ID Attribute Type Nordat Method ID Attribute Type Type Nordat Method ID Attribute Type Type Type Type Type ID Attribute Norma Attribute Attribute Type Type ID Attribute Norma Attribute Attribute Attribute Attribute Type ID Attribute Norma Attribute Attribute

2017 MIDAS FEM TECHNICAL EDUCATION SEMIINAR

現況モデルのモデル変更(1/7)

- 1. 入力ファイルの読み込み
- 2. 層境界の変更
- 3. メッシュ位置の変更
- 4. 基盤位置の変更
- 5. メッシュの追加
- 6. 地盤改良部の作成

現況モデルのモデル変更(4/6)

• 基盤位置の変更

2017 MIDAS FEM TECHNICAL EDUCATION SEMIINAR

現況モデルのモデル変更(5/6)

• メッシュの追加

現況モデルのモデル変更(6/6)

• 地盤改良部の作成

Session 3 質疑応答

