

MIDAS CONSTRUCTION TECHNICAL DOCUMENT COLLECTION

上下水道施設

MIDAS CONSTRUCTION **TECHNICAL** DOCUMENT **COLLECTION**

- 上下水道施設
- 01. midas Civil機能紹介2018
- 03. midas Civil 解析ギャラリー
 - 水処理施設の耐震診断

- 07. 清見配水池耐震診断
- 08. 豊田配水池耐震診断
- 09. PCタンクの耐震診断 日中コンサルタント株式会社

02. Tutorial - 揚水機/排水機場の耐震検討

- 貯水PCタンクの地震応答解析

- 三次元地震応答解析による浄水施設の耐震診断

04. 震度法による配水施設の耐震性能照査及び補強検討

05. 震度法およびプッシュオーバー解析による配水施設の耐震照査

06. 昭和30年代に建設された沈砂池の耐震性能照査

RBオリジナルコンサルタント株式会社

RBオリジナルコンサルタント株式会社

MIDAS TECHNICAL DOCUMENT

上下水道施設

01.

CONSTRUCTION COLLECTION

midas Civil 機能紹介2018

midas Civil 機能紹介

株式会社マイダスアイティジャパン

midas Civil 機能概要

■ あらゆる土木構造物のモデリングと解析が可能

→ 静的解析から高度な解析まで、あらゆる解析に対応

1 多様な解析機能

橋梁

<u>Standard</u>

静的線形解析、<mark>格子解析</mark> 座屈·固有値解析

- <u>動的解析</u> 線形動的(応答スペクトル/時刻歴) 非線形動的(Μ-φ)、ファイバー解析
- 静的非線形フレーム解析
- プッシュオーバー解析 段階施工解析
- クリープ・乾燥収縮、段階施工 幾何非線形解析
- 材料非線形 静的材料非線形
- 熱応力解析 熱伝導、水和熱解析

midas Civil 機能概要

■ 最新インターフェイスを用いた便利なモデリングと 簡単なデータの検討と修正

2 直観的なUI環境

- ワークツリーによるモデルや作業内容確認
- 他人が作業したモデルでも一目でわかる。
- 段階施工データの簡単な確認 施工段階単位のデータ管理 段階施工アニメーション
- モデル自動チェック機能 重複要素、フリーエッジ、フリーフェイス、 要素座標系の不具合
- マルチウィンドウ制御による作業効率性Up 同モデルに対する結果成分別の比較

midas Civil 機能概要

■ 64ビット対応の優れた計算性能 → プリポスト、ソルバー共に64ビット対応

3 優れた計算性能

- 64ビット対応のプリポストとソルバー GPUソルバー対応
- 使用できるメモリの制限がない。 大規模モデルの解析や結果データ量の 大きい動的解析で有効

既作成計算書の自動更新

midas Civil 解析機能

midas Civil 解析機能

midas Civil 解析機能 ファイバーモデルの検証 ■ 実験および解析モデル **Constant Axial Loading** Cyclic Loading 350 500 350 1000 500 200 200 500

midas Civil 解析機能

ファイバーモデルの検証

	MIDAS
Max. Lateral Force [kN]	88.5124
Min. Lateral Force [kN]	-88.6498

活用例 - 地中構造物の耐震解析

活用例 - 地中構造物の耐震解析

- → 節点バネ(1節点バネ、2節点バネ)と分布バネタイプの両方が使用できる

midas Civil Total Engineering Solution

C

MIDAS CONSTRUCTION TECHNICAL DOCUMENT COLLECTION

上下水道施設

02. midas Civil Tutorial

揚水機/排水機場の耐震検討

概要

● 解析モデル - 床版·壁: 板要素 (線形の弾性材料)

荷重及び境界条件

- 支持条件

- 変位、反力

● 結果評価

- 常時:死荷重、静止土圧、

- 地震時荷重:慣性力、

地下水圧・揚圧力、内水圧・水重

地震時動水圧、応答変位荷重

① 杭支持: 杭頭部の線形バネ

- 配筋計画による部材グループ別の

単位幅当たりの断面力(曲げ・せん断)

の耐震解析

画面構成と操作方法

http//jp.midasuser.com/civil 17

揚水機·排水機場下部工

◆ 検討概要

 対象 	揚水機場
・重要度区分	重要度区分A
・要求性能	レベル2地震動に対して以下の性能を確保する。 施設の崩壊を防止し、営農の継続のための揚水機能を保持する。
 対象地震動 	
	- 躯体に起因する k _{hc} =0.32(部材のしん性が見込める場合) k _{hc} =0.70(部材のじん性が見込めない場合)
・耐震診断法	解析方法:3次元弾性解析による応答変位法 部材モデル:板要素(壁、床)
・安全性の評価	曲げ・せん断耐力照査 (本資料では耐力照査は行わず、照査用の断面力の抽出作業までを紹介します。)
◆ 使用材料及び許容」	动度

√ J/99-r		
設計規準強度	$f_{ck} = 21 N/mm^2$	

弾 性 係 数 $E_c = 2.35 \times 10^4 N/mm^2$

モデルの基本情報

3

1

1450

8

4

18 上下水道施設

◆ 配筋計画による部材グループ - 流水直角方向 ・側壁の部材グループ:土圧壁(上)①~②、水圧壁①~③、床板、床板下部

土圧壁(上) ②

3300

2770

80×

5000

1000

800

10470

02. midas Civil Tutorial - 揚水機/排水機場の耐震検討

モデルの基本情報

- ◆ 荷重の組合せ
- 荷重の種類と組合せを下表に示します。

区分	荷重の種類		入力タイプ【"荷重>静的荷重"メニュー】	
		躯体自重	自重	
	五共手	建屋荷重	節点荷重	
	外间里	ポンプ設備主荷重	平面荷重	
常時		群集荷重(その他機器荷重)	圧力荷重	
	静止土圧		静水圧	
	地下水庄、揚庄力		静水圧	
	内水圧、水重		平面荷重	
	躯体慣性力		自重	
	建屋水平力		節点荷重	
地震時	機器慣性力		物体力	
	地震時動水圧			
	応答変位荷重		平面荷重	

※ 地震時の地震動の方向は流水直角方向『モデリング時の全体座標系の(+)Y方向』とします。

モデルの基本情報

◆ 作用荷重 - 常時

1.躯体の自重

:構造野断面と材質を考慮してプログラム内部で自動計算

2. 建屋荷重

4100

-

8

1300

: 上屋から下部構造に作用する荷重は以下の通りです。

モデルの基本情報

800

◆ 配筋計画による部材グループ – 流水直角方向 ・側壁の部材グループ:土圧壁(下)①~③

20 上下水道施設

Y軸 ◀

Y軸 ◀—

7

8

F G A

A E

9

単位:kN

	1通り	2通り	3通り
D通り	-320	-340	-250
C通り	-400		-400
B通り	-380		-420
A通り	-300	-350	-230

※荷重の符号はモデルの全体座標系に従います。従った、上表の常時荷重は鉛直上向きを(+)とします。

					単位:kN
軸力の変動			水	平力(+Y方向	う)
1通り	2通り	3通り	1通り	2通り	3通り
-250	-10	-60	570	350	310
-40		10	440		390
70		5	310		415
250	-30	60	50	380	170

※ 荷重の符号はモデルの全体座標系に従います。

◆ 作用荷重 – 常時

3.機器荷重

(1) 主要な機器荷重

揚圧力(kN/m³)

59.88

◇ 主要機器の重量					
		単位:kN/m ²			
	第1ポンプ	第2ポンプ			
電動機	16.1	18.0			
減速機	15.0	8.0			
主ポンプ	37.0	30.0			
バルブ	78.0	68.1			
吐口管 ※	25.5	22.5			
液体抵抗器	7.0	7.0			

※ 吐口管は壁線上に掛かる分布荷重で、ライン荷重タイプで 与え、荷重単位はkN/mになります。

モデルの基本情報 ◆ 作用荷重 – 常時 4.静止土圧 (a) 土圧の基本式 -----... Pa=Kc·(q+γ·H) 7 88C R ここで、Pa:常時の静止土圧強度(kN/m²) 7 10.00 Kc:静止土圧係数 (=0.5) ... q:地表面載荷荷重(kN/m²) -----R. (+3.11 γ: 土の単位体積重量 (kN/m³) 『荷重図(流水直角方向)』 『荷重図(流水方向) 』 (b) 静止土圧 - 地表面(Ps1) : 0.0 $: 0.5 \times (0.0 + 17.0 \times 3.69)$ = 31.37 (kN/m²) - 地下水位(Ps2)_流水 - 層変化(Ps2′) $: 31.37 + 0.5 \times (0.0 + 8.0 \times 0.98)$ = 35.29 (kN/m²) - 底版軸(Ps3) : 35.29+0.5×(0.0+7.8×5.13) $= 55.30 (kN/m^2)$ - 地下水位(Ps2)_流水直角 : 0.5×(0.0+8.0×4.0) $= 16.00 (kN/m^2)$ <u>74.+15.00</u> 5. 地下水圧及び揚圧力 外水位(m) 11.31 底版EL(m) 5.2 _____外水位 IL(+)11.31m ▽外水位 亂(+) EL(+)9.3 水の単位体積重量(kN/m³) <u>▽ 冷却水↓</u> 一 NL 9.50a (****8 9.80 深さ(m) 6.11 外水圧(kN/m3) 59.88

12

11

モデルの基本情報

- ◆ 作用荷重 常時
- 6. 内水圧及び水重

・内水重は内水位高×水の単位体積重量を底版に面分布荷重として与えます。 ・内水圧は内水重を側壁に面分布荷重として与えます。

・中間隔壁に作用する内水圧は相殺されるため考慮しません。

載荷位置	内水位 (m)	底版EL (m)	深さ (m)	水の単位体積重量 (kN/m ³)	内水圧 (kN/m²)	水重 (kN/m²)
吸込水槽	10.44	5.20	5.24	9.80	51.35	51.35
冷却水槽	9.50	5.20	4.30	9.80	42.14	42.14
所内排水層	10.50	5.20	5.30	9.80	51.94	51.94

◆ 作用荷重 - 地震時

- 1.躯体の慣性力
- : 自重に設計水平震度(kh=0.32)を掛けて載荷

※ 建屋荷重の慣性力は「2. 建屋荷重」の"地震時"を参照

2.機器荷重の慣性力

:機器荷重を質量に変換してそれに設計水平震度(kh=0.32)を掛けて載荷

3. 地震時動水圧

(1) 動水圧の算定方法

: 地震時の動水圧はウェスタガード法により、台形等分布荷重に変換します。

『動水圧の等分布荷重への置換概念図』

Pew = 7/12·kh· γ_w ·b·h² hg = 2h/5ここで、Pew:単位幅当たりの壁面(1面)に作用する動水圧(kN/m²) kh :水平震度 =1.0 にて算出し、荷重組合せの際に設計水平震度の値を組み合わせます。 γw :水の単位体積重量(kN/m³) =9.8にして算出 b :水槽幅(m) =1.0m 幅にて算出

h :各壁面別の水位深さ(m)

◆ 作用荷重 - 地震時

(2) 動水圧の算定

: 下表に台形分布形式に換算した動水圧を示します。

	吸込水槽	冷却水槽	所内排水層	
内水位(m)	10.44	9.50	10.50	
底版EL(m)				
H(m)	4.74	3.80	4.80	
Pew(kN)	128.4	82.5	131.7	
Hw1(kn/m ²)	10.8	8.7	11.0	
Hw2(kn/m ²)	43.4	34.8	43.9	

『動水圧の載荷概念図』

◆ 作用荷重 - 地震時

4. 応答変位法に用いる作用荷重

(1) 地盤の水平変位振幅

```
: 地盤の水平変位振幅は次式により求めます。
```

 $U_{h}(z) = \frac{2}{\pi^{2}} S_{V} T_{G} \cos \frac{\pi z}{2H}$

- ここに、 Uk(z) :地表面からの深さz(m)における地盤の水平変位振幅(m)
 - z : 地表面からの深さ (m)
 - S'_ν : 基盤地震動の速度応答スペクトル (m/s)
 - T_G:表層地盤の特性値(s) H :表層地盤の厚さ(m)
- ここで、Sv'=1.00(m/s²)、T_G=1.05(s)、H=40.0(m) とします。

表 - 変位応答変位振幅					
土層区分	z(m) cos(nz/2H) Uh(z)(m)				
	0.00	1.000	0.2128		
	1.00	0.999	0.2126		
В	2.00	0.997	0.2121		
	3.00	0.993	0.2113		
	4.60	0.984	0.2093		
Ac	5.00	0.981	0.2087		
	6.00	0.972	0.2069		
	7.00	0.962	0.2048		
۸	8.00	0.951	0.2024		
AS	9.00	0.938	0.1996		
	9.80	0.927	0.1972		
	10.30	0.919	0.1956		

表層地盤の固有周期(T_G)(s)

Ο --O----O----O 0 0 0 0 0 8000 Ø 0 0 800,2@1500= 0 Ó 7@1714.3=12000 13600 (2) 基礎バネ値 - 水平2方向バネ : 100,000 (kN/m) - 鉛直方向バネ : 150,000 (kN/m) - 水平軸回りの回転バネ

15

モデルの基本情報

◆ 作用荷重 - 地震時

(2) 地震時水平荷重

:応答変位法における、地震時の水平方向の作用荷重を下表に示します。

1-	P(-)	, 深さ,の占における水平方向花園	(LN/m2
San San Bran y	P (2)	; (KCZV/点1=401) 3小十万回何里	(KA)/ III

- k_H : 単位面積当たりの地盤ばね定数 (kN/m³)
- U(z) : 深さzの点における地盤の水平方向変位振幅(m)
- U(z₈) : 深さz₈(m)における地盤の水平方向変位振幅(m)
- 28 : 地表面から躯体底面までの深さ(m)

表 - 変位応答変位振幅

土層区分	z(m)	地盤の相対変位 Uz(m)	地盤の相対変位 Uz-Uzb(m)	地震時水平荷重 P(z)(kN/m ²)	地盤のバネ定数 K _h (kN/m ³)
	0.00	0.2128	0.0172	97.7	5,692
	1.00	0.2126	0.0170	96.8	5,692
В	2.00	0.2121	0.0165	94.0	5,692
	3.00	0.2113	0.0157	89.3	5,692
	4.60	0.2093	0.0137	78.0	5,692
Ac	5.00	0.2087	0.0131	46.5	3,557
	6.00	0.2069	0.0113	214.2	18,973
	7.00	0.2048	0.0092	174.2	18,973
٨٥	8.00	0.2024	0.0068	128.2	18,973
As	9.00	0.1996	0.0040	76.2	18,973
	9.80	0.1972	0.0016	30.5	18,973
	10.30	0.1956	0.0000	0.0	18,973

(3) 地震時周面せん断力

	G_{p}	C .	T	
τ_B^-	$\pi \cdot H$	Sy.	I_{G}^{*}	sin
τ.=	$= \frac{\tau_U + \tau_B}{\tau_U + \tau_B}$			
• S	2			

 $\frac{\pi \cdot z_B}{2H}$ т_в:底版に作用する地震時周面せん断力 T_s:側壁に作用する地震時周面せん断力

モデルの基本情報

◆ 境界条件

(1) 杭基礎の配置図

=148.6 (kN/m²) =65.3 (kN/m²)

新規プロジェクトの開始

断面の定義 壁と床版の厚さデータを入力します。 材料 & 断面 手順 No 名称 () [厚さ]タブを選択 タイプ 形状 2 [追加] クリック 3 厚さ番号:"1" ④ 面内&面外: "1000" 5 [適用] ボタンクリック 6 上記の③~⑤を繰り返して下表のように 追加の厚さを定義 番号 厚さ(mm) 2 700 3 500 400 4 |& 新雨 | 8 材料 | **新**麗 | 岸海 11 800 12 500 13 200 7 [OK] ボタンクリック 8 [断面] タブを選択 🧕 [追加] クリック 動面タイプ: "直方体" 1) 断面番号: "99"、名称: "Dummy" (1) "ユーザー" チェックオン B H : "100", B : "100" (I) [OK] ボタンをクリック (5) [閉じる] ボタンクリック 平面の読み込み 手順 1) 💽 アイコンメニュー[外部ファイル読み 込み] > [AutoCAD DXFファイル…] 2) [参照…] ボタンをクリックして、本資料が 入っているチュートリアルフォルダの**"平面** 図.dxf"を開く 3) 全てのレイヤ から"0","Center Line" をCtrlキーを押しながら選択し、> をク リックして、"選択されたレイヤ"に移動 ④ 基準点: "0,0,5200" 5 [OK]ボタンをクリック 6) 作業画面右上にある"視点変更"ボタン

643-75 643-75 889-75

の"TOP"ボタンをクリック

02. midas Civil Tutorial - 揚水機/排水機場の耐震検討

8	厚さデータ	×
0	値入力 U-リブ補強板	
	厚古番号 1	4
E_ (M) (b)	●面内 & 面外 1000 mm	
₩ (C)		
込み (D べ替え(R)	面外 0 mm	
	□板オフセット	
	 厚さ比 	
	0/@	
	ローカル 0 mm	Offset
		bisiance
		л <u>э</u> лн 🕑
×	16回了-夕 18月/2-ヴ~	×
× E. (00 (0) (0) (0) (0) (БЖ7-9 10 10 10 10 10 10 10 10 10 10	
× <u> <u> </u> </u>	ESE-2 1 1 1 1 1 1 1 1 1 1 1 1 1	
× ± (00) (0) (##7-2	
× ± .00 50 00 ± .02 ± .02 00 ± .02 ± .02 00 ± .02 ± .02 00 ± .02 ± .02		

杭基礎の杭頭中心に地盤バネを設定するために杭芯位置に節点を生成します。

√ 杭芯の節点生成-2 杭基礎の杭頭中心に地盤バネを設定するために杭芯位置に節点を生成します。 手順

従って、ここでは杭の間隔を水圧壁の位置に合わせるために、距離を1450mmとします。

杭基礎の杭頭部に地盤バネを設定するために杭芯位置に節点を生成します。

板要素を生成する前に押出し元の線要素に分割位置の節点をコピーします。

*1 移動距離を入力する際に、"dx,dy,dz"入力欄を一度クリックすれば入力欄に緑色に変わるので、その状態で作業画面から2点をクリックして2点間の距離を自動入力できます。

3分割

27

02. midas Civil Tutorial - 揚水機/排水機場の耐震検討

			_										
C. 🖻			-		1111 0510	101	10.00	Civil 2015	1945	1.1.m	PC 8	ann Hé c	1
》 約点生成	*7 #21/6946		1900 ス マージ	(水和) () 回転 () 回転 () 投票	・ ・ ・ マラー スケール		 日 日 () (// 要查生6		L. L.N.ABA	1 1917-1917	X 910	
• • •			• • •				• • • •	· · · ·	• •	•			
								:					
•									•				
									•			•	
		•		•						•		•	
		•		•	•		•			•		•	~
÷.		•		•	•		•			•		•	Ğ
15			1.1.12	70.FP			+	+					
恋じ作業	画面から2	点をク	ッツンし	(2点間	町の距離を	日動人	力でさます	••					
													29

											1					1	1
										1	•					•	:

底版生成-要素の押出し。線要素を押出して板要素を生成します。

頂版生成-要素のコピー」 底版をコピーして 頂版を生成します。 ーブル 作業 グループ 報告書 手順 節点要素。境界質量荷重。 , 節点 • 要素 1 作業ツリーの"要素>板要素"を右クリッ · 梁要索:76 要素複製/移動 クして、"**アクティブ**" 選択 Ⅰ 材料 8 ── 開始番号 濯枳(S) 節点番号 1028 選択追加(P) 2) リボンメニュー [節点/要素]>[要素]> 選択解除(U) 1044 要素番号: 全選択解除(N) [複製/移動] モード アクティブ((. ●コピー(C) ○移動(M) - et 厚 3) アイコンツールバーの " 🚏 単一"をクリック □ピー/移動 ○ 節点の増分 アクティブ追加 4) 右図を参照して、底版の要素を選択 非アクティブ 全体アクティブ 5 10 S) 等間隔>dx,dy,dz: "0,0,6850" 等間隔 削除 dx,dy,dz: 0,0,6850 回数 : **"1"** 回数: 6 厚さ番号の増分:"1" ○任意間隔 7 [適用] ボタンをクリック)指定 距離: ଃ アイコンツールバーの " 🎬 単一"をクリック (例: 5,3,4.5,3@5.0 9) 右図を参照して、残りの部分を選択 0, 0, 0 (D) 等間隔>dx,dy,dz: "0,0,8200" 材料番号の増分 0 🚽 🗆 🛛 回数 : **"1"** 断面番号の増分 🏮 🗧 🚺 厚さ番号の増分: 🚺 븇 🗌 回 1) 厚さ番号の増分: "3" 12 [適用] ボタンをクリック 交差計算 🗌 節点 🗌 要素 □節点属性のコピー □要素属性のコピー マージ計算の許容誤差 12 7 適用(A) 閉じる(C) *1 頂版は厚さ700㎜で、厚さ番号が"2"です。したがって、厚さ番号の増分を利用して、コピーされる板要素の厚さ番号を"コピー元の厚さ番号+1=2"に指定します。 16 床版生成-要素のコピー 底版をコピーして頂版を生成します。 手順 1) 作業画面右上にある"視点変更"ボタン 節点要素」境界質量荷重 の"正面"ボタンをクリック 要素複製/移動 × - 開始番号 -2) アイコンツールバーの " 🏋 単一"をクリック 2156 節点番号 3) 頂版の板要素を全部選択 要素番号: 2084 ... ④ アイコンツールバーの " [p アクティブ" クリック コピー/移動 ○節点の増分 5) 作業画面右上にある"視点変更"ボタン の"TOP"ボタンをクリック 等間隔 dx,dy,dz: 0, 0, 2870 6 右図を参照して、頂版の要素を選択 回数: **⑦** 等間隔>dx,dy,dz: "0,0,2870" 〇任意間隔 ⊖y ⊖z 回数 : **"1"** ○指定 距離: 8 厚さ番号の増分:"1" (何): 5,3,4.5,3@5.0) 9 [適用] ボタンをクリック 0, 0, 0 [閉じる] ボタンをクリック 材料番号の増分 🛛 붖 🗌 💷 断面番号の増分 🕛 🔶 🗆 🔍 8 厚さ番号の増分: 🚺 🕂 🗌 🖻 交差計算□節点 □要素 □ 節点属性のコピー □要素属性のコピー マージ計算の許容誤差 9 適用(A) 閉じる(C) 10 *1 床版は厚さ500mmで、厚さ番号が"3"です。したがって、厚さ番号の増分を利用して、コビーされる板要素の厚さ番号を"コビー元の厚さ番号+1=3"に指定します。

02. midas Civil Tutorial - 揚水機/排水機場の耐震検討

36

| クルーフ - 上 境界グルーフ:0 - ↓ 荷重グルーフ:0 - ↓ 荷重グルーフ:0

● 構造グループ:4 ● 0 [節点=0:要素=41] ● Center Line [節点=0:要素=65] ● 枕芯 [節点=78:要素=0]

創当

追加割当

割当解除

テーブル 作業 <mark>グループ</mark>報告書

3

└ 境界グループ:(

□節点

☑裏素

選択94 断面

◎ 複数選択

10 2105+02207 2200+0

A200

置換

交差

閉じる

ダミー要素生成 | オートメッシュを利用して板要素を生成するために、領域境界上にダミー要素を生成します。 手順 1) リボンメニュー [節点/要素]>[要素]> 節点要素。境界質量荷重 要素生成 [要素生成] × ... —— 開始番号 2) 断面: "99:Dummy" 節点番号 5216 要素番号 5566 ... 交差計算: "**節点"、"要素"** 要素タイプ 3) 右図を参照して、赤丸の2点を順に選択 一般梁/テーパー断面梁要素 ④ 右図を参照して、青丸の2点を順に選択 ⑤ リボンメニュー [節点/要素]>[要素]> 7. [複製/移動] 6) アイコンツールバーの " 🏋 単一"をクリック 節点要素。境界質量荷重 7) 右図を参照して、内壁の線要素を選択 要素複製/移動 ~ _ 8) モード : "コピー" 📃 開始番号 (2 5216 等間隔>dx,dy,dz: "0,0,2870" 材料 _____ 番号 名称 節占番号 重幸幸号 5568 回数 : **"1"** 8 1 1: Fc21 ~ 断面 <u>------</u> 番号 名称 (1) [適用] ボタンをクリック (C)−4⊏ ○移動(M) 99 99: Dummy \sim - コピー/移動 ○ 節点の増分 断面の向き = ● β -角度 ○参照点 9 ○参照ベクトル ●等問題 dx,dy,dz: 0, 0, 2870 [deg] 構成節点 回数: 1902 □直交 任意間隔 x,y,z 🗸 🗸 □ 要素属性のコピー 交差計算: 🗹 節点 🗹 要素 💴 マージ計算の許容誤差 ○ 交差点で節点を生成 10 通用(A) 閉じる(C) 適用(A) 閉じる(C)

40

02. midas Civil Tutorial - 揚水機/排水機場の耐震検討

7 要素グループの定義 手順 - ブル 作業 <mark>グループ</mark>報告書 1) ツリーメニュー2の "構造グループ" を右 」 クループ - 🚰 構造グループ:4 新規 1 要素=39] クリックし、"新規…"選択 日本: 100 - 100 2) 名称:"**頂版"** 接尾語: "1to5" 3 [追加] ボタンをクリック 下表を参照して、作業手順②~③を繰 り返す 名称 接尾語 頂版 底版 1to6 底版 側壁(左) 1to3 隔壁(左) 水圧壁(冷) 隔壁(右) 側壁(右上) 側壁(右下) 土圧壁(上) 1to2 水圧壁 1to3 床版 床版下部 土圧壁(下) 1to3 5 [閉じる] ボタンをクリック *1 上表で接尾語が灰色になっている部分は接尾語を空欄のままにします。

素グループの定義	
名称 :	
接尾語 : 1to5	
(例135	6 7 to 20 by 2)
	3
12 17 1	追加(A)
0	修正(M)
Center Line	育(IB余(D)
枕心 Dummy	非認識認識
L'uniny	A LYBUARD (BURN)

1 頂版と床版の要素グループ範囲を右図に 示します。右図を参照して、前頁の方法 と同様に要素グループを登録してください。 ※壁につきましては、本資料の前半にある

手順

「モデルの基本情報> 配筋計画による 部材グループ」を参考に、グループ分けし てください。

支持条件の設定 杭の支持バネ条件を設定します。 節点要素。境界。質量荷重。 手順 ーブル 作業 グループ 報告書 節点バネ支持 970-7 月 横道グループ:88 日 杭芯 [節点=78;要素=0] 1) ツリーメニュー2の "構造グループ>底版" 境界グループ名 デフォルト 🗗 Dummy [節点=0', 要素=199 (戸]順版1 [節点=126 ; 要素=152 を右クリックし、"アクティブ"選択 T劇版2「節点=90:要奏=133 オプション]削版3 [節点=14 ; 要素=24 2) ツリーメニュー2の "構造グループ>杭芯" ●追加○変更○削除 3 (前於)(計点-14,要素-24) 3 (前於)(前点-176;要素+26) 3 (前於)(前点-176;要素+26) 3 (前於)(前点-106;要素+176) 3 (成形)(前点-106;要素+176) 3 (成形)(前点-106;要素+176) 3 (成形)(前点-126;要素+177) 3 (成形)(前点-14)(要素+24) 3 (成形)(前点-14)(要素+26) 3 (成形)(前点-14)(要素+26) 3 (成形)(前点-14)(要素+26) 節点バネ (節点座標系) をダブルクリック タイプ 1次 3) 単位系: "N,mm" → "kN,m" SDy (SRy) ④ メインメニュー[境界条件] > [バネ支持] SDZ (SRZ) >[節点バネ条件] クリック 割当 **Manana**a 追加割当 5) SDx : "100000" 割当解除 SDx 100000 kN/m 選択 SDy : "100000" SDy 100000 kN/m 選択解除 SDz 150000 kN/m アクティブ SDz : "150000" SRx 120000 kN*m/[rad] 非アクティブ SRy 120000 kN*m/[rad] 削除 SRx : "120000" SRz 0 kN*m/[rad] 名称変更 固定 SDx SDy SDz SRx SDz SRx + 圧壁(下)1 [節占=200 : 要素 SRy : "120000" し工业(〒)1[15点=200 ; 要素= 上圧壁(下)2 [節点=20 ; 要素=: ト圧群(下)3 [節占=125 : 更表=: 6 [適用] ボタンをクリック □減衰定数 Cx 0 Cv 0 Cx 0 Cy 0 Cz 0 kN*m*sec/[rad] CRx 0 ?? 荷重ケースの定義 常時と地震時の荷重ケースを定義します。 手順 BBBBB 1) メインメニュー[荷重] > [荷重ケース生 ●静的荷重 ◎地震荷重 ◎比下戌の他 【】 ◎温度荷重 ◎施工段階 ◎格子モデル解析 成] > [静的荷重ケース] クリック 静的荷言 ◎移動荷重 ◎水和熱 ◎荷重テーブル 2 名称:"躯体自重" BHINGRO D. 3 タイプ: "死荷重(D)" ④ [追加] ボタンをクリック 静的荷重ケース ⑤)下表を参照して、残りの荷重ケースを入力

			Civil 2017			
非常条件	荷重 解析	新興 PC	静的增分	ight 詳価	照会	
した 通知合セケース	(些自重 等) (小前点荷重 () 二) 發明交位 14	-物体力 動点質量 荷重を質量に変換	四要書 四連続 風定型	 日本 <li< td=""><td>翹定·</td><td> □ 初期断面力。 □ 床荷香の煎定。 □ 要素仕上荷重 </td></li<>	翹定·	 □ 初期断面力。 □ 床荷香の煎定。 □ 要素仕上荷重
ケース生成	- · · · · · · · · · · · · · · · · · · ·	动动力的	EALENT	1 注闭的	1	初則所直力だの他
1 1	1	1	1110日日		40	S 💭 🛤 🕺 🖓 📆 🗂

単位:kN

3通り

-250

-400

-420

-230

51

節点荷重

MX

MY

MZ I

8

kΝ

kN*n

kN∗m

適用 (A) 閉じる (C)

*1 載荷節点を間違って選択した場合は、アイコンツールバーの" 🛞 全選択解除"ボタンを押すか、選択した節点をもう一度クリックして選択を解除します。

7

右の表と載荷図を参照しながら、作業⑥

~⑧を繰り返して、残りの節点に対して

建屋荷重を適用

А

■ 常時の建屋荷重表

D诵り

C通り

B通り

A诵り

0

2通り

-340

-350

1通り

-320

-400

-380

-300

■ 地震	時の建屋荷	重表		単位:kN				
		軸力の変動	1	水平力(+Y方向)				
	1通り	2通り	3通り	1通り	2通り	3通り		
D通り	-250	-10	-60	570	350	310		
C通り	-40		10	440		390		
B通り	70		5	310		415		
A通り	250	-30	60	50	380	170		

			荷車	单位:kN/m², kN/m			
01_減速機	No1_主ポンプ	No1_バルブ	No1_吐口管	No1_液体抵抗器			
3.85,0	4.85,0	9.39,0.33	12.0,0.5	0,1.0			
4.85,0	7.9,0	9.99,0.33	12.0,1.5	1.5,1.0			
.85,1.6	7.9,2	9.99,1.68	-	1.5,2.5			
8.85,1.6	4.85,2	9.39,1.68	-	0,2.5			
-15.0	-37.0	-78.0	-25.5	-7.0			
荷位置に節点が無くても載荷領域内の節点に荷重の負担分を自動計算して載荷してくれます。							

頂版に機器荷重を定義します。

機器荷重の慣性力 頂版に機器荷重の慣性力を載荷します。 C 表示 手順 静的荷重
か
地震荷重
か
沈下/その他 ① メインメニュー[荷重] > [荷重タイプ/ LC L. 質量] > [荷重を質量に変換] クリック)移動荷重 ()水和熱 ()荷重テーブル 2) 質量方向: "X,Y,Z" 荷重を質量に変換 節点要素境界質量荷重 3 "**変換する荷重の種類"** 全て選択 管量方向 物体力 4) 荷重ケース: "機器荷重" OX OY OZ Оxz 荷重ケース名 8 5 [追加] ボタンをクリック © X Y Z 2 機器慣性力 6 [OK] ボタンをクリック 変換する荷重の種類 物体力を与える節点 □ 要素グループの使用 ✓節点荷重 ⑦ メインメニュー[荷重] > [荷重タイプ/ 杭芯 ☑床荷重 節点リスト **質量] > [物体力]** クリック ☑ 圧力荷重 (静水圧) 990to1917 4240to42 重力加速度: 9.806 m/sec2 8)荷重ケース名:"機器慣性力" 置換する質量成分 荷重ケース/係数 ☑節点質量 9 作業画面右上にある"視点変更"ボタン 荷重ケース: 機器荷重 ✓荷重を質量に変換 ☑構造質量 地流係料: の"正面"ボタンをクリック ☑ 格子質量 追加 荷重ケース増減 物体力の係数 (D) "節点リスト": 右図を参照して頂版の 機器荷<u>重</u> 1 修正 節点を全て選択 削除 (1) "置換する質量成分"全て選択 皆信 荷重ケース X 1 物体力の係数: "Y:0.32" 6 機器 慣性力 0 0.32 0 キャンヤル OK 13 [追加] ボタンをクリック < オペレーション 追加(A) 修正(M) 削除(D) 13 *1 選択した節点群の中から質量が与えられている節点に対して慣性力が与えられます。

内水圧と水重を定義します。

内水圧・水重の載荷-2 節点要素境界質量荷重 手順 平面荷重の指定 水圧壁(冷 1)構造内部で設定しずらい壁は該当の部 荷重ケース名 内水圧&水重 分だけをアクティブして、載荷します。 荷重グループ名 ~ 以下は水圧壁と水圧壁(冷)に関する設 デフォルト 平面荷重の形式 2 定です。 荷重タイプ: 吸込水槽(+) 水圧壁 要素タイプ: 2) 荷重タイプ: "吸込水槽(+)" 板要素 荷重載荷平面 3 2点目 3 "1点目(原点)、2点目(x軸上)、3点 1点目(原点) -5.05, 4.7, 5.2 目(x-y平面上)":入力欄を一度ク 2点目(×軸上) -5.05, 12.9, 5.2 リックして緑色になったら、右図を参照して 3点目(x-v平面上 -5.05, 4.7, 12.05 作業画面から該当の節点をクリック 許容誤差: 0.001 4) 荷重方向: "グローバルX" - 自動セッティング --UCS... 登錄平面... 5 [適用] ボタンをクリック 要素の選択 水圧壁(冷) 荷重載荷平面上の要素 グループ名:杭芯 、 面番号: 面 #1 荷重方向 投影 荷重方向: グローバル X 水圧壁 投影: なし 角空目分: ■ 載荷領域を指定する節点: 1点目 □ 平面荷重のコピー ●x ○y ○z **車由**: 距離 m 2点目 (例: 5, 3, 4.5 , 305.0) 道用(A 5 別じる(C)

吸込水槽(動水+)

平面荷重の形式

名称:

解脱:

平面荷重

荷重タイプ:

x-方向複製

y-方向複製

平面荷重

□ 等分布

×1,y1: 0, 0

x2,y2: 100, 0

×3,y3: 100, 4.74

时口官 (海体抵抗器

電動機

地震時の動水圧

内水位(m)

底版EL(m)

H(m)

Pew(kN)

Hw1(kn/m²)

Hw2(kn/m²)

No2 吐口管

×4,y4 : 0, 4.74

平面荷重の形式 & 解説

手順

1) メインメニュー[荷重] > [平面荷重の指

2 名称: "吸込水槽(動水+)"

4) 平面荷重: "4点" チェックオン

x1,y1:"0,0"、荷重:"43.4"

x2,y2: "100,0"、荷重: "43.4"

x3,y3:"100,4.74"、荷重:"10.8"

x4,y3:"0,4.74"、荷重:"10.8"

3 荷重タイプ: "平面"

5 [追加] ボタンをクリック

8 [追加] ボタンをクリック

[閉じる] ボタンをクリック

6 名称:"冷却水槽(動水+)"

7 平面荷重: "4点" チェックオン

x1,y1:"0,0"、荷重:"34.8"

x2,y2:"100,0"、荷重:"34.8"

x3,y3:**"100,3.8"**、荷重:**"8.7"**

x4,y3 : **"0, 3.8"**、荷重 : **"8.7"**

9) 右表と右図を参照しながら、"所内排水

槽(動水+)"についても平面荷重を定義

定] > [平面荷重形式の設定] クリック

動水圧を定義します。

○集中 ○ライン ◉平面

()3 占 ()4 占

m 荷重: 43.4

m 荷重: 43.4 m 荷重: 10.8 m 荷重: 10.8

吸込水槽

10.44

4.74

128.4

10.8

43.4

壁にY方向に作用する動水圧を載荷します。

(例:5,3,45,3@5.0)

26

4(7)

追加 58

修正

削除

開しる 10

冷却水槽

9.50

5.7

3.80

82.5

8.7

34.8

(0.H)

(0 0)

所内排水層

10.50

4.80

131.7

11.0

43.9

kN/m2

kN/m2

kN/m2

kN/m2

解脱,

(100,H)

(100)

<平面荷重の定義イメージ>

± Hw1 🗲

67

√√ 応答変位荷重の載荷-2 側壁と底面に地震時の周面せん断力を載荷します。

壬順	🏋 🖉 🛞 🔊 🔩 🗣 🥵 🍾 32to36 40 43to46 5 🔤 🏋 37to40 47 48 52 58 🔤 🤅 😥 🔀 😅 🗁 🕍 🔊 🧎 🗐 🖉	
于限		
1) "視点変更"ボタンの"左"をクリック		
2 メインメニュー[荷重]>[圧力荷重]>		
[圧力荷重の割当] クリック	●荷重ケース ○荷重タイプ	
3)荷重ケース名:"応答変位荷重"	· 荷重ケーノ名 3 - 応答変位荷重 3	
 (4) 方向: "グローバル Z" 	荷重%17名 吸込水槽:51.35kN/m ² 側壁(右	i)
⑤」一定>P1: "65.3"		/m²
⑥ アイコンツールバ・一の" ☆ 単一"チェックし、右	Ĩ1 <u>2</u> / <i>№</i> 7/0 Ĩ77 <i>1</i> / № _	
図を参照し、側壁(左)の要素を選択	オブション ●通加 ○変更 ○削除	
	要素为(7) 16(年間に対)(面)	
■ 一定>P1: "-65 3"	板要索の圧力荷重	
	P4	
	P1 P2 P3 P3 P3 F5 F5 F5 F5 F5 F5 F5 F5 F5 F5 F5 F5 F5	地震時
		1
		Ŧ
₩ 一定>P1:"-148.6"		
13) 右図を参照し、側壁(右)の要素を選択		1
🚯 [適用] ボタンをクリック	хэри: 0.0.0	Ŧ.
	投影: OYes ONo	-1
		1
	P1 65.3 kN/m2	-1
	P2 0 kN/m2	
	P3 U KN/m2 P4 0 kN/m2	7
		-1
	住口の 通用(A) 開じる(C)	1

✓ 構造解析実行 手順 ① "作業ツリー>構造>要素>梁要素" を マウスで右クリックし、deleteキーで削除 2) メインメニュー[解析] > [解析実行] > [解析実行]をクリック

◆ 構造解析実行中は画面中央に構造解析が実行されていることを知らせるダイアログボックスが表示されます。

◆ モデルビューの下の(図中の❷)のメッセージウィンドウに要素剛性行列の構成と組合せ過程などのすべての解析過程が表示されます。 ◆ 解析作業が完了すると、全ての解析所要時間がメッセージウィンドウに表示され、画面中央のウィンドウは閉じます。

解析結果の検討

手順

モード

- れています。
- 討作業は解析後処理モードで行われるように設定されています。
- 内容が削除されるので注意が必要です。
- 合はツールバーの一をクリックします。

◆ midas Civilはプログラムの効率性とユーザーの利便性のために、プログラム環境が解析前処理モードと解析後処理モードに区別さ

◆ モデリング作業に付随する全ての入力作業は、解析前処理モードで可能で、反力・変位・断面力・応力度など解析結果に対する検

◆ 解析作業が完了した後、解析後処理モードから解析前処理モードに切り替えて入力事項を修正します。変更すると既に解析された

◆ 解析がエラーなしに完了した後、モード環境が解析前処理モードから解析後処理モードに自動転換されます。 ◆ モデリング作業で入力された項目の再確認、一部データの修正、変更などのために解析後処理モードから処理モードを切り替える場

※ 板要素の断面力成分

梁要素は部材の断面が決まっていて要素毎に断面力を算定できますが、板要素はどの領域までを同じ断面と見なして断面力を算出するかが明確でありません。 したがって、板要素では断面力を単位幅(1m)を基準に算定します。板要素の単位長さ当りの部材力Mxxは要素座標系x軸の単位長さ当り曲げモーメントで、 要素座標系x軸と平衡に鉄筋を配筋する際の断面力として使用することができます。

● 板要素の断面力成分

コンター図で出力される部材力は単位幅(1m)を基準に算定されたものであり、板要素の大きさを変えても同様の結果が出ます。

地震時の断面力の確認-2 手順
 要素
 改重
 胎点
 Pix 04/100
 Pix 04/100
 Pix 04/100
 Pix 04/100

 1051
 地震動
 中央
 -33003
 3503

 1051
 地震動
 1071
 地震動
 1075
 5504
 353

 1051
 地震動
 1075
 95804
 353
 1075
 95804
 353

 1051
 地震動
 1075
 95804
 353
 1075
 95804
 353

 1052
 地震動
 1074
 8585
 3777
 418
 4005

 1052
 地震動
 1015
 57377
 418
 4005
 1073
 118
 118
 119
 1052
 118
 111
 114
 57377
 319
 319
 119
 115
 5222
 464
 1053
 111
 1053
 111
 111
 55222
 464
 1054
 11051
 111
 115
 5222
 464
 1054
 11051
 111
 5226
 464
 1054
 11051
 115
 11055
 1115
 1115
 <td 要素 荷重 節点 ^{Fxx} (kN/m) Fy (kN/ ()メインメニュー[結果]>[テーブル]> [■ 結果テーブル▼] >[板要素▶] >[断面力(単位長さ)] 2 [なし] ボタンクリック 3) 選択タイプ: "要素グループ" "**頂版1"** 選択 ④ [追加] ボタンクリック 5 荷重ケース/組合わせの選択:"地震時 (CB)" ⑥ 節点の選択: "中央"、"節点" ■ フィルタリングダイアログ 節点/要素 2 7 [OK] ボタンクリック すべて なし 反転 Element v 1051to1268by31 選択タイプ 要素グルー 柿ボ □ 平均節点結果

*1 配筋計画に基づいてグループ化した要素別の断面力結果を取り出します。 *2 結果テーブルの値はコピーしてEXCELへ貼り付けることができます。

midas

【謝辞】

本資料の作成に当たり、対象構造物である揚水機・排水機場の形状選定や角 株式会社三祐コンサルタンツの堀 治啓様にはご感謝を申し上げます。

80

地震時の断面力の結果数値で確認します。

y m)	Fxy (kN/m)	Fmax (kN/m)	Fmin (kN/m)	角度 [[deg])	M>∝ (kN*m/m)	Myy (kN*m/m)	Moy (kN*m/m)	
0.581	166.824 166.824	41 2 253 392 063	-1 00.581 -1 45.009	69.712 70.797	-0.717 28.390	1 23 787 1 81 227	-9.753 -5.617	
7.204	166.824	421.901 432.847	-1 41 .601 -56 .758	71.847 68.521	-12356 -30962	1 63 573 65 201	-5 949	
3,959 6,979 9,410	100.824 52.247 52.247	404.335 414.779 425.807	-61.491 57.01.4 50.400	81 509 81 941	12,001 39,743 43,331	160.259 192.999	-13./10 -19.363 -20.139	
4.548 4.548	52.247 52.247	402.468 402.796	49.877 63.583	81.381 81.029	42.601 34.972	194,651 124,790	-18.456 -18.850	
9.410 1.892 4.052	52.247 -63.315 -62.215	427.093 472.114 474.257	64.1.47 69.725 75.01.9	81.534 -80.829 -90.755	38.070 36.975 29.016	128598 150.460 174152	-20532 -32.252 -24.325	
9,730	-63.315	470148 469.872	74,905	-80,557	40.545	181,940	-32,470	
4.053 4.893	-63.315 -118.045	474.087 447.589	64.539 -9.993	-80.995 -74.473	31.574 32.920	119,939 127,081	-31.957 -40.703	
5.173 3.513 2.512	-118.045 -118.045	440172 456323	-3.579 -2.390	-73.933 -74.512	36.292 36.278 20.492	1 51 261 1 55 809	-42 51 7 -41 961	
6.1.73 7.835	-118.045 -62.341	439.055	-17596	-74.434	26.625	97,766	-39.307 -41.839	
5.967 9.703	-62.341 -62.341	202.666 282.151	-46.772 -42.521	-75.005 -78.708	22.325 29.439	1 21 584 1 31 51 4	-43.413 -44.546	
9.703 5.967 7.1.40	-62.341 -62.341 1.43.938	281.251 201.124 389.303	-66.843 -70.452 -60.038	-79 506 -76 335 70 079	22,474 3,934 22,414	74.944 59.546 1.38.975	-39.776 -38.543 -9.517	
るの断	面力(UL:U	os) 🖌 ((>	
_	[_]							
	_				×			
	荷重ケ	ース/組合わせ	の選択	章节,	点の選択 6			
以 10504a	前 型 建	☆目車(ST) 屋荷重(ST) 器荷重(ST)		Y	節点			
1052to	2091 静	正土庄(ST) 水庄&揚圧力(ST)					
追加		小庄& 小重(ST)	,					
削除		器慣性力(ST) 霞時動水圧(S 密変位荷重(S	Ð					
変更		■ 2010 回重(0 時(CB) 歳時(CB)	17	5				
交差	_							
				1)			
				ок	キャンセル			
								01
							I	01
					\odot			
)		Œ		- NV	/			
<u>7</u> +Γ	夕//+ →△	≡.+.≁.>+.+.	ドーター	・ナンブキカー	╘╷┯╗┙┇╼┯╗┽╼	≡たいた+*+-	±1 †-	
中们	≈1+•俠	剖力法な	FCIC夕大	はこ師	リ及びこ明言	= ていいこしこさる	まし/こ、	
				_				
	-	作成日		2	018.10.12			
		製品バー	ジョン	n	nidas Civil	Ver.845		
		作成老		\$A	· 국수가고 /	ダファイニィン	セパン,	
	-	1 FJ以1日		17		ラヘア 1 テイン		

02. midas Civil Tutorial -揚水機/排水機場の耐震検討

MIDAS CONSTRUCTION TECHNICAL DOCUMENT COLLECTION

上下水道施設

03.

- 水処理施設の耐震診断

- 三次元地震応答解析による浄水施設の耐震診断

midas Civil 解析ギャラリー

- 貯水PCタンクの地震応答解析

下水処理場ポンプ棟

3次元FEMモデル 柱•梁:梁要素

地震時荷重:慣性力 (L1, L2) 地震時土圧

線形静的解析

【対象構造物】 円筒形高架水槽球形ドーム屋根 PC タンク 内 径:28.5m 有効水深:4.0m 有効容量:2500m³

【解析モデル】

3次元FEMモデル PC タンク: 板要素 架台スラブ:板要素 R C 脚:非線形梁要素 フーチング: 板要素 杭 基 礎:等価ばね要素

【荷重条件】

常時: 自重、プレストレス荷重、静水圧 地震時:L1 地震動、L2 地震動 慣性力、動水圧(質点置換)

【解析条件】

非線形時刻歴応答解析

【解析結果】

せん断力図

外側鋼管ブレース補強

固有値解析

円筒耐震壁増設

浄水場			
土木構造物	:RC造、	半地下、	直接基礎
	16m×4	40m×3~	~8m
建築構造物	:RC造、	地上3階	、地下28
	直接基礎	木 E	
【解析モデル】			
3次元FEM-	モデル		
協占粉・つう	FFエ部。	5	

要素数:4万要素 柱・梁 :梁要素 底板·頂版:板要素 道流壁•壁:板要素 地 盤

【荷重条件】

常時荷重 :自重、積載荷重、常時土圧 静水圧 地震時荷重:L1 地震動、L2 地震動 地震時動水圧(質点置換)

【解析方法】 3次元線形時刻歴応答解析

【照査結果】

03. midas Civil 解析ギャラリー

MIDAS CONSTRUCTION TECHNICAL DOCUMENT COLLECTION

上下水道施設

04. 震度法による 配水施設の耐震性能照査及び補強検討

04. 震度法による配水施設の耐震性能照査及び補強検討

	如此小他改改的展住能照直及(
解析種別	3次元静的線形解析
キーワード	配水池、震度法、構造物特性係数、而
解析の目的	地表面近傍に建設された池状構造物(びL2地震時における要求性能を満足) 方法を検討する。
解析の概要	 ・常時荷重および地震時の主働土圧、 向および短辺方向に載荷した際の関 ・L1では許容応力度照査を行い、L2 ・照査の結果、要求性能を満足しない
	構造諸元(寸法
	解析モ
	常時荷
	↓
	L1 地震時荷重の設定
検討の流れ	
1天口1 07 //1 0	構造解析の実施
	断面力の抽出・整理
	許容応力度照査
	Nb 固/丌
関連資料	・水道施設耐震工法指針・解説 2009
担当者の所見	・L2 地震時には部材の非線形変形性を ため、ジョイント部の変形量照査時に ・構造物特性係数は既定値を用いる場合 より設定する場合がある。 ・壁要素では応力集中により局所的に関 して工学的に判断する。 ・頂版、底板、側壁等の板部材は、厚さ

び補強検討

討震照査

(ランクA1)について、震度法によりL1地震時およ するかを照査し、満足しない場合には適切な耐震補強

内容水による静水圧および動水圧、慣性力を長辺方 所面力を算出し、部位、部材ごとに抽出する。 では曲げ耐力およびせん断耐力による照査を行う。 い部位の補強を検討する。

には注意が必要である。 合と2次元非線形静的解析(プッシュオーバー解析)に 断面力が大きくなる場合があるが、照査時には壁部材と さが一様であっても位置により配筋が異なるため、同じ ックごとに照査すると作業の効率化が図れる。 のパターンや加震方向により荷重ケースが多くなる。

震度法による配水施設の耐震性能照査及び補強検討

部材の L1 地震時応力度照査出力例

				レベル1			発生断面力			発生応力度			許容応力度判定			応力比				
					+XL1	-XL1	+YL1	最大	軸力(kN)	せん断 (kN)	曲げ(kN*m)	$\sigma c(N/mm2)$	$\sigma s(N/mm2)$	τ m(N/mm2)	σca= 12	σ sa= 240	τa= 0.6375	σc/σca	σs/σsa	τ/τa
			M(khlm/m)	正側(下側引張)	26.1	25.8	26.0	26.1	0.00	0.00	26.10	0.74	20.13	0.000	0	0	-	0.06	0.08	-
		#1 70	M(KINTT/TT)	負側(上側引張)	-63.8	-65.8	-64.2	-65.8	0.00	0.00	-65.80	2.24	57.05	0.000	0	0	-	0.19	0.24	-
		仕列	\//LMI/m)	正側	70.9	72.5	71.5	72.5	0.00	72.50	0.00	0.00	0.00	0.171	-	-	0	-	-	0.27
	EIT		V(KIN/ III)	負側	-66.2	-67.3	-72.2	-72.2	0.00	-72.20	0.00	0.00	0.00	0.170	-	-	0	-	-	0.27
	灭应		M(khlm/m)	正側(下側引張)	22.9	28.6	30.8	30.8	0.00	0.00	30.80	0.97	31.61	0.000	0	0	-	0.08	0.13	-
		壯閉	MICKINIII/ III/	負側(上側引張)	-53.8	-54.3	-54.5	-54.5	0.00	0.00	-54.50	2.06	62.85	0.000	0	0	-	0.17	0.26	-
		1工[0]	V(kN/m)	正側	63.1	63.7	64.2	64.2	0.00	64.20	0.00	0.00	0.00	0.151	-	-	0	-	-	0.24
TANG			¥ (KI¥/ III)	負側	-57.4	-58.2	-54.9	-58.2	0.00	-58.20	0.00	0.00	0.00	0.137	-	-	0	-	-	0.21
JĘNX			M(kNm/m)	正側(下側引張)	43.1	42.1	34.3	43.1	0.00	0.00	43.10	1.22	33.23	0.000	0	0	-	0.10	0.14	-
		赴 利	INICKINIII/ III/	負側(上側引張)	-58.3	-52.5	-61.2	-61.2	0.00	0.00	-61.20	2.09	53.06	0.000	0	0	-	0.17	0.22	-
		11.20	V(kN/m)	正側	70.1	72.6	66.5	72.6	0.00	72.60	0.00	0.00	0.00	0.171	-	-	0	-	-	0.27
	¥a;π		¥ (KI¥/ III)	負側	-70.1	-72.7	-69.8	-72.7	0.00	-72.70	0.00	0.00	0.00	0.171	-	-	0	-	-	0.27
	AN RE		M(kNm/m)	正側(下側引張)	38.9	37.7	31.1	38.9	0.00	0.00	38.90	1.22	39.92	0.000	0	0	-	0.10	0.17	-
		 井 問	INICKINIII/ III/	負側(上側引張)	-68.5	-67.0	-71.2	-71.2	0.00	0.00	-71.20	2.69	82.11	0.000	0	0	-	0.22	0.34	-
		1110	V(kN/m)	正側	72.6	72.2	74.4	74.4	0.00	74.40	0.00	0.00	0.00	0.175	-	-	0	-	-	0.27
			¥ (KI¥/ III/	負側	-72.6	-72.2	-70.9	-72.6	0.00	-72.60	0.00	0.00	0.00	0.171	-	-	0	-	-	0.27
			M(kNm/m)	正側(下側引張)	105.5	124.3	110.6	124.3	0.00	0.00	124.30	2.04	55.64	0.000	0	0	-	0.17	0.23	-
			m(mm/m/	負側(上側引張)	-55.5	-57.4	-45.8	-57.4	0.00	0.00	-57.40	0.94	25.69	0.000	0	0	-	0.08	0.11	-
		11/1	V(kN/m)	正側	131.7	127.6	116.6	131.7	0.00	131.70	0.00	0.00	0.00	0.211	-	-	0	-	-	0.33
	長辺		*(KI4/ III/	負側	-129.9	-142.9	-131.7	-142.9	0.00	-142.90	0.00	0.00	0.00	0.229	-	-	0	-	-	0.36
	IX DE		M(kNm/m)	正側(下側引張)	70.0	37.8	45.7	70.0	0.00	0.00	70.00	1.26	40.46	0.000	0	0	-	0.10	0.17	-
		柱間	m(mm/m/	負側(上側引張)	-38.0	-58.5	-50.7	-58.5	0.00	0.00	-58.50	1.05	33.81	0.000	0	0	-	0.09	0.14	-
		12100	V(kN/m)	正側	72.7	79.6	83.5	83.5	0.00	83.50	0.00	0.00	0.00	0.134	-	-	0	-	-	0.21
底版				負側	-56.4	-49.5	-54.8	-56.4	0.00	-56.40	0.00	0.00	0.00	0.090	-	-	0	-	-	0.14
1-SAUK			M(kNm/m)	正側(下側引張)	139.8	118.0	156.2	156.2	0.00	0.00	156.20	2.56	69.91	0.000	0	0	-	0.21	0.29	-
		柱列		負側(上側引張)	-71.3	-75.7	-74.6	-75.7	0.00	0.00	-75.70	1.24	33.88	0.000	0	0	-	0.10	0.14	-
1		1271	V(kN/m)	正側	161.2	133.9	164.0	164.0	0.00	164.00	0.00	0.00	0.00	0.262	-	-	0	-	-	0.41
	短辺			負側	-161.2	-134.0	-123.5	-161.2	0.00	-161.20	0.00	0.00	0.00	0.258	-	-	0	-	-	0.40
	ALL ALL		M(kNm/m)	正側(下側引張)	131.7	109.0	148.2	148.2	0.00	0.00	148.20	2.67	85.66	0.000	0	0	-	0.22	0.36	-
		柱間 V(kN	M(kNm/m)	負側(上側引張)	-68.6	-66.6	-70.0	-70.0	0.00	0.00	-70.00	1.26	40.46	0.000	0	0	-	0.10	0.17	-
			V(kN/m)	正側	123.3	107.9	123.1	123.3	0.00	123.30	0.00	0.00	0.00	0.197	-	-	0	-	-	0.31
1			V(kN/m)	自創	-123.3	-107.9	-103.6	-123.3	I 0.00	-123.30	0.00	0.00	0 0 0	0 1 9 7	-	-	0	-	-	0.31

部材の L2 地震時耐力照査出力例

				レベル2				発生断面力	t	コンクリートのみの 設計せん断耐力	せん断筋による 設計せん断耐力 設計での断耐力			耐力		耐力比			
					+XL2	-XL2	+YL2	最大	軸力(kN)	せん断(kN)	曲げ(kN*m)	Vcd(kN)	Vsd(kN)	Vyd(kN)	せん断耐力判定	Mu(kN•m)	曲げ耐力判定	M/Mu	V/Vyd
			M(kNm/m)	正側(下側引張)	29.5	29.9	26.8	29.9	0.00	0.00	29.90	192.95	99.78	-	-	434.41	0	0.07	-
		ᆉᅍ	WI(KINIII/ III/	負側(上側引張)	-64.0	-69.6	-68.9	-69.6	0.00	0.00	-69.60	184.21	89.28	-	-	-365.98	0	0.19	-
		11.71	\//LNL/>	正側	70.9	75.2	71.1	75.2	0.00	75.20	0.00	184.21	89.28	273.49	0	-	-	-	0.27
	Eл		V(KIN/III)	負側	-74.3	-70.9	-86.3	-86.3	0.00	-86.30	0.00	184.21	89.28	273.49	0	-	-	-	0.32
	灭应		M(kNm/m)	正側(下側引張)	19.1	25.0	37.0	37.0	0.00	0.00	37.00	174.53	99.78	-	-	333.82	0	0.11	-
		计图	WI(KINIII/ III/	負側(上側引張)	-56.6	-68.3	-63.2	-68.3	0.00	0.00	-68.30	166.63	89.28	-	-	-280.14	0	0.24	-
		竹工川町	V/kN/m)	正側	62.9	64.9	68.6	68.6	0.00	68.60	0.00	166.63	89.28	255.91	0	-	-	-	0.27
百版			V(KIN/III)	負側	-60.4	-72.3	-78.2	-78.2	0.00	-78.20	0.00	166.63	89.28	255.91	0	-	-	-	0.31
現加			M(kNm/m)	正側(下側引張)	45.8	44.5	49.7	49.7	0.00	0.00	49.70	192.95	99.78	-	-	434.41	0	0.11	-
		+th Tail	M(KINTT/TT)	負側(上側引張)	-65.6	-56.7	-111.6	-111.6	0.00	0.00	-111.60	184.21	89.28	-	-	-365.98	0	0.30	-
		在列 (1)(1)(1)		正側	75.6	82.9	89.4	89.4	0.00	89.40	0.00	184.21	89.28	273.49	0	-	-	-	0.33
	453 JU		V(KIN/III)	負側	-75.6	-82.9	-88.4	-88.4	0.00	-88.40	0.00	184.21	89.28	273.49	0	-	-	-	0.32
	应应		M(I-Max /ar)	正側(下側引張)	42.2	38.6	38.6	42.2	0.00	0.00	42.20	174.53	99.78	-	-	333.82	0	0.13	-
		计图	M(KINTT/TT)	負側(上側引張)	-69.9	-64.8	-116.4	-116.4	0.00	0.00	-116.40	166.63	89.28	-	-	-280.14	0	0.42	-
		竹工川町	V/kN/m)	正側	72.8	71.5	78.7	78.7	0.00	78.70	0.00	166.63	89.28	255.91	0	-	-	-	0.31
			V(kN/m)	負側	-72.8	-71.5	-91.8	-91.8	0.00	-91.80	0.00	166.63	89.28	255.91	0	-	-	-	0.36
			M(kNm/m)	正側(下側引張)	101.0	156.5	90.8	156.5	0.00	0.00	156.50	236.63	131.29	-	-	705.74	0	0.22	-
		ᆉᅍ	WI(KINIII/ III/	負側(上側引張)	-90.0	-88.4	-44.5	-90.0	0.00	0.00	-90.00	236.63	131.29	-	-	-705.74	0	0.13	-
		11.71	V/kN/m)	正側	189.4	170.1	114.3	189.4	0.00	189.40	0.00	236.63	131.29	367.93	0	-	-	-	0.51
	Eл		V(KIN/III)	負側	-171.8	-192.1	-114.1	-192.1	0.00	-192.10	0.00	236.63	131.29	367.93	0	-	-	-	0.52
	灭应		M(kNm/m)	正側(下側引張)	182.5	50.2	90.5	182.5	0.00	0.00	182.50	216.32	131.29	-	-	548.69	0	0.33	-
		计图	WI(KINIII/ III/	負側(上側引張)	-62.9	-74.3	-65.9	-74.3	0.00	0.00	-74.30	216.32	131.29	-	-	-548.69	0	0.14	-
		竹工川町	V/kN/m)	正側	80.5	106.1	118.8	118.8	0.00	118.80	0.00	216.32	131.29	347.61	0	-	-	-	0.34
应版			V(KIN/III)	負側	-84.2	-50.0	-111.7	-111.7	0.00	-111.70	0.00	216.32	131.29	347.61	0	-	-	-	0.32
吃瓜			M(kNm/m)	正側(下側引張)	208.5	141.7	272.4	272.4	0.00	0.00	272.40	236.63	131.29	-	-	705.74	0	0.39	-
		ᆉᅍ	WI(KINIII/ III/	負側(上側引張)	-91.3	-83.0	-91.1	-91.3	0.00	0.00	-91.30	236.63	131.29	-	-	-705.74	0	0.13	-
		11.71	V/kN/m)	正側	219.0	156.1	249.4	249.4	0.00	249.40	0.00	236.63	131.29	367.93	0	-	-	-	0.68
	453 JU		V(KIN/III)	負側	-219.0	-156.0	-124.5	-219.0	0.00	-219.00	0.00	236.63	131.29	367.93	0	-	-	-	0.60
1	NE 122	M	M(kNm/m)	正側(下側引張)	172.1	90.3	219.0	219.0	0.00	0.00	219.00	216.32	131.29	-	-	548.69	0	0.40	-
1		壯閉	M(kNm/m) 柱間	負側(上側引張)	-72.3	-66.5	-86.6	-86.6	0.00	0.00	-86.60	216.32	131.29	-	-	-548.69	0	0.16	-
1		1고[비]	V(kN/m)	正側	150.5	94.0	151.3	151.3	0.00	151.30	0.00	216.32	131.29	347.61	Ó	-	-	-	0.44
			V(KIN/11)	負側	-150.5	-93.9	-132.0	-150.5	0.00	-150.50	0.00	216.32	131.29	347.61	0	-	-	-	0.43

MIDAS CONSTRUCTION TECHNICAL DOCUMENT COLLECTION

上下水道施設

05.

震度法及びプッシュオーバー解析による 配水施設の耐震照査

震度法および	びプッシュオーバー解析による 配
解析種別	3 次元静的線形解析、2 次元静的非線
キーワード	配水池、震度法、固有値解析、プッシ
解析の目的	半地下構造物の配水池施設について、 行う。
解析の概要	 ・柱部材を梁要素、床版および壁部本 ・地盤種別および構造物の固有周期」 ・施設重要度がランクA1(レベル25) ッシュオーバー解析により構造物株 ・算定された設計水平震度に基づき、 を設定する。 ・常時荷重および地震時荷重に対する。 な応力度照査、耐震性能2の場合面
検討の流れ	構造 解 構造 構造 構造 構造 構造 し 、 、 、 、 、 、 、 、 、 、 、 、 、
関連資料	 ・水道施設耐震工法指針・解説(200 ・道路橋示方書・同解説 V 耐震性能線
担当者の所見	 ・施設構造物の種類(地下・半地下・ 解析手法が異なる(震度法、応答図 ・震度法を適用した線形解析で耐震性 ッシュオーバー解析によって構造物

形解析

- シュオーバー解析、静的線形解析、耐震照査
- レベル1 地震時およびレベル2 地震時の耐震照査を

材を板要素として3次元 FEM モデルを作成する。

より設計水平震度を設定する。

地震動に対して耐震性能2を確保)の場合、2次元プ 特性係数を算出する。

地震時作用荷重(動水圧、地震時土圧、慣性力等)

る3次元静的線形解析行い、耐震性能1の場合は、許 耐力照査をそれぞれ行う。

震	度	法お	らよび	「プッシ」	ュオ・	—バ	一解	術に	こよる	る配水	、施設	の耐剤	震照 者	È				
照了	 を 結	果例	IJ															
∙応	力	度照3	査(レ^	ドル1地震]動)													
	- 201						発生断面力	6 -			発生応力度	9		午容応力度判 5			応力比	
照宜王	Tel				+XL1	-XL1	+YL1	-YL1	最大	$\sigma c(N/mm2)$	$\sigma s(N/mm2)$	2 m(N/mm2)	σca= 10.5	σ sa= 270	t a= 0.33	σc/σca	σs/σsa	2/2:
	1		M(kNm/m)	正側(下側引張)	7.5	7.8	7.0	6.9	7.8	1.16	27.53		0	0	· · ·	0.11	0.10	
		柱列带	111,10 111, 111,	負倒(上側引張)	-18.4	-18.6	-15.4	-15.4	18.6	2.59	54.38	-	0	0	-	0.25	0.20	-
			V(kN/m)	正例	21,1	21.3	19.7	19.6	21.3	-	-	0,107		-	0	-	-	0.32
	長辺	-	1000000000	夏伊	-21.1	-20.9	-19.6	-19.6	21.1		-	0.106	-	-	0	-	-	0.32
		12830232	M(kNm/m)	止明(下明51%) 仍用(上例2128)	-17.9	-19.1	-14.9	-14.6	10.0	2.42	40.34		0	0	-	0.12	0.17	-
		柱間帯	30,337.72	正例	20.8	21.2	19.3	19.3	21.2	5.42	120.00	0.106	-	-	0	-	0.40	0.32
			V(kN/m)	負側	-20.9	-20.3	-19.3	-19.1	20.9	-	12	0.105	-	144	Ő	-	-	0.32
貝歇				正倒(下側引張)	8.2	8.4	8.2	8.2	8.4	1.25	29.64	-	0	0		0.12	0.11	-
		## 20.7	m(KNm/m)	負側(上側引張)	-16,1	-15.8	-16.6	-17.3	17.3	2.41	50.58		0	0	1.73	0.23	0.19	· · · · ·
		112717	V/kN/m)	正例	23.1	22.3	22.7	22.6	23.1	-	-	0.116	-	-	0	-	-	0.35
	短辺		4 (Fate) 1112	負側	-23.4	-23.6	-22.5	-22.3	23.6			0.118	-		0		-	0.36
			M(kNm/m)	正倒(下倒引張)	5.6	5.7	5.2	5.2	5.7	1.08	38.85		0	0	-	0.10	0.14	-
		柱間帯		負側(上側引張)	-13.0	-12.8	-8.7	-9.1	13.0	2.70	112.52	-	0	0	-	0.26	0.42	-
			V(kN/m)	上例	15.8	15.7	15.1	15.3	15.8	-	-	0.079			0	-		0.24
-		-	100000	現1月 天向(下向2128)	52.9	53.6	47.0	47.7	52.6	1.01	55.16	0.054	0	0		0.17	0.20	0.10
		柱列带	M(kNm/m)	伯彻(上彻2128)	-741	-74.9	-500	-59.0	74.0	2.38	65.81	-	ö	ő	-	0.23	0.20	-
			V(kN/m)	正例	104.8	84.5	952	94.5	104.8	-	-	0.233	-	-	0	-	-	0.71
			V(kN/m)	負倒	-82.5	-105.0	-95.6	-95.6	105.0	-		0.233		C	õ		1	0.71
	長辺		Addates (m)	正側(下側引張)	49.1	48.9	44.8	45.1	49.1	1.92	74.46	1417	0	0	245	0.18	0.28	-
		11 10 25	M,KINT/TI/	負側(上側引張)	-69.8	-70.8	-61.1	-63.7	70.8	2.77	107.37		0	0	1	0.26	0.40	
		12101.00	V(kN/m)	正側	71.3	71.5	70.2	72.9	72.9			0.162	245	1 242 3	0		-	0.49
底版		L	* (sate in)	負側	-70.8	-73.3	-72.0	-74.2	74.2	-	-	0.165		1.75	0	-	-	0.50
			M(kNm/m)	正例(下例引張)	58.0	57.8	58.3	59.0	59.0	1.99	60.72	-	0	0	-	0.19	0.22	-
		柱列帯		11月(上側5)張)	-80.9	-77,7	-84.4	-82,4	84.4	2.68	74.10	-	0	0	-	0.26	0.27	-
			V(kN/m)	11 105 43 /84	-124.2	-122.7	-126.9	124.0	126.0	1	2	0.276		-	0	-		0.84
	短辺	-		正倒(下倒2)28)	39.1	36.7	38.2	38.6	39.1	1.53	59.30	0.504	0	0	-	0.15	0.22	0.82
			M(kNm/m)	負倒(上倒引導)	-12.2	-12.8	-10.9	-13.5	13.5	0.53	20.47	-	0	0	-	0.05	0.08	140
		柱间带	100.007.5	正側	51.0	51,3	44.8	40.9	51.3	-	-	0.114	-	1 (. 	0	-	-	0.35
	-	-	V(KN/m)	負側	-44.0	-44.3	-36.8	-41.0	44.3	-	-	0.098		4 970 9	0		10 0 0	0.30
			M'kNm/m)	正倒(下倒引張)	0.9	3.1	1.4	1.5	3.1	0.15	7.50	-	0	0		0.01	0.03	
	x	方向	100,04 0007 007	負側(上側引張)	-1.7	-2.0	-1.9	-1.7	2.0	0.09	4.84	-	0	0	-	0.01	0.02	-
			V(kN/m)	正側	1.4	1.2	1.0	1.4	1.4	-	-	0.003	~	-	0	-	-	0.01
TO SP	<u> </u>			負例 (〒/01/〒/013135)	-2.0	-5.4	-3.3	-4.0	5.4	-	-	0.012	-	-	0	-	-	0.04
JR NK			M(kNm/m)	1上1月(下1月515世)	-10.0	-10.5	-21.0	-21.2	21.2	0.29	9,90		0	0	-	0.03	0.04	-
	Y	方向		正倒	-15.0	-10.0	-21.0	-61.6	0.0	-	-	-	-	-		-	0.10	-
		V(kN/m)	負倒	-30.7	-30.3	-34.5	-34.8	34.8	-	-	0.077	-	(+)	0	-	-	0.23	
			-	正倒(下側引碟)	16.7	16.7	18.2	17.1	18.2	0.87	45,79	-	0	0	-	0.08	0.17	-
		**	M(kNm/m)	負倒(上側引張)	-27.9	-28.0	-26.0	-26.8	28.0	1.34	70.44	-	0	0	(+)	0.13	0.26	-
	· ^	7119	V(kN/m)	正例	56.2	47.5	63.9	53.4	63.9	-	-	0.142	-	1 (÷)	0		-	0.43
管部			(hit) id/	負側	-47.8	-58.8	~67.9	-49.7	67.9	-	-	0.151		-	0		~	0.46
底版			M(kNm/m)	正倒(下倒引張)	50.8	50.0	49.6	64.5	64.5	2.64	109.75	-	0	0	-	0.25	0.41	-
	Y	Y方向 M		10(1)上例引張)	-9.2	-8.9	-9.5	-12.9	12.9	0.53	21.95	-	0	0	-	0.05	0.08	-
		201	V(kN/m)	正例	55.8	55.1	52.6	65.0	65.0	-	-	0.144	-	-	0	-	-	0.44
5			a second contraction of the	負傷				-	0.0	-	-	-	· · · ·	-		-	-	-

·耐力照査(レベル2地震動)

	四木竺ご						発生断	面力		設調	计耐力	耐力比		設計耐力	耐力比		
			照宜固所		+XL2	-XL2	+YL2	-YL2	最大	Mud(kN·m)	曲げ耐力判定	M/Mud	Vyd(kN)	せん断耐力判定	M/Mu	V/Vy	
			M(1)	正側(下側引張)	10.2	10.3	7.1	7.1	10.3	79.62	0	0.13	-	-	0.12	-	
		44.70.44	M(KNm/m)	負側(上側引張)	-27.6	-27.9	-15.4	-15.7	27.9	95.16	0	0.29	-	-	0.27	-	
		杜列帝	\//I-NL/>	正側	24.6	25.9	19.9	19.7	25.9	95.16	-	-	116.04	0	0.00	0.2	
	EIT		V(KIN/ m)	負側	-25.6	-23.9	-19.7	-20.0	25.6	95.16	-	-	116.04	0	0.00	0.2	
	友辺		M(LNI ()	正側(下側引張)	8.3	8.4	6.5	6.5	8.4	41.71	0	0.20	-	-	0.18	-	
		计明世	M(KNm/m)	負側(上側引張)	-25.0	-25.2	-14.7	-14.8	25.2	41.71	0	0.60	-	-	0.55	-	
		111101市	V(kN/m)	正側	23.4	25.0	20.2	20.0	25.0	25.92	-	-	73.10	0	0.00	0.3	
TEHE			V(KIN/ m)	負側	-24.8	-22.7	-19.3	-19.2	24.8	25.92	-	-	73.10	0	0.00	0.3	
JEWK			M(LNm (m)	正側(下側引張)	8.2	8.4	8.3	8.1	8.4	120.73	0	0.07	-	-	0.06	-	
		分別業	M(KINIII/III)	負側(上側引張)	-16.2	-15.5	-20.2	-25.5	25.5	95.16	0	0.27	-	-	0.24	-	
		杜列帝	\//I-NL/>	正側	24.3	23.2	22.5	24.9	24.9	50.42	-	-	92.10	0	0.00	0.2	
	477 × TT		V(KIN/ m)	負側	-24.7	-24.6	-21.5	-19.6	24.7	95.16	-	-	116.04	0	0.00	0.2	
	应应		M(LNm (m)	正側(下側引張)	6.1	6.2	5.5	3.4	6.2	41.71	0	0.15	-	-	0.14	-	
		计图学	w(kinff/ff)	負側(上側引張)	-14.6	-14.2	-11.4	-14.7	14.7	32.82	0	0.45	-	-	0.41	-	
		f土间带	V(kN/m)	正側	17.2	17.0	16.7	18.6	18.6	25.92	-	-	73.10	0	0.00	0.2	
			V(KIN/III)	負側	-8.2	-7.9	-13.3	-12.8	13.3	16.70	-	-	62.93	0	0.00	0.2	
			M(LNI ()	正側(下側引張)	74.6	74.8	48.2	48.3	74.8	275.77	0	0.27	-	-	0.25	-	
		分別業	M(KNm/m)	負側(上側引張)	-100.1	-98.7	-60.2	-60.6	100.1	322.11	0	0.31	-	-	0.28	-	
		11.2小小	\/(LNL/)	正側	125.6	61.5	95.4	94.5	125.6	117.00	-	-	129.12	0	0.00	0.9	
	Em		V(KIN/III)	負側	-56.7	-123.0	-95.3	-96.9	123.0	228.31	-	-	162.68	0	0.00	0.7	
	72/2		M(LNm (m)	正側(下側引張)	60.6	60.6	43.4	44.7	60.6	187.43	0	0.32	-	-	0.29	-	
		计明世	M(KINIII/III)	負側(上側引張)	-117.1	-113.3	-80.8	-93.9	117.1	187.43	0	0.62	-	-	0.57	-	
		11111111111111111111111111111111111111	\/(LNL/)	正側	146.2	84.9	116.7	127.1	146.2	187.43	-	-	151.86	0	0.00	0.9	
应归			V(KIN/ m)	負側	-81.8	-141.1	-114.3	-130.3	141.1	187.43	-	-	151.86	0	0.00	0.9	
HES NIX			M(LNm (m)	正側(下側引張)	59.4	58.9	60.6	68.4	68.4	275.77	0	0.25	-	-	0.23	-	
		拉 列带	W(KINIII/III)	負側(上側引張)	-79.3	-77.6	-94.7	-96.6	96.6	322.11	0	0.30	-	-	0.27	-	
		杜列帝	V(kN/m)	正側	121.6	121.9	123.5	128.2	128.2	117.00	-	-	129.12	0	0.00	0.9	
	477 × TT		V(KIN/111/	負側	-134.6	-133.0	-142.4	-147.6	147.6	228.31	-	-	162.68	0	0.00	0.9	
	应应		M(LNm (m)	正側(下側引張)	42.2	41.6	36.0	39.6	42.2	187.43	0	0.23	-	-	0.20	-	
		 杜閉 第 1 	W(KINIII/III)	負側(上側引張)	-23.3	-23.9	-28.7	-21.4	28.7	187.43	0	0.15	-	-	0.14	-	
		11101777	V(kN/m)	正側	63.5	61.6	40.9	18.2	63.5	78.55	-	-	112.76	0	0.00	0.5	
			¥(KI¥/11)/	負側	-60.8	-60.3	-22.9	-53.6	60.8	50.40	-	-	97.07	0	0.00	0.6	
			M(LNm (m)	正側(下側引張)	0.8	2.2	3.8	3.1	3.8	117.00	0	0.03	-	-	0.03	-	
	×-	+ m	M(KINIII/III)	負側(上側引張)	-1.0	-2.4	-3.4	-2.6	3.4	117.00	0	0.03	-	-	0.03	-	
	~,		V(kN/m)	正側	3.3	1.2	5.0	4.5	5.0	117.00	-	-	129.12	0	0.00	0.0	
管部			V(KIN/111/	負側	-1.2	-4.5	-9.9	-9.3	9.9	117.00	-	-	129.12	0	0.00	0.0	
頂版			M(LNm (m)	正側(下側引張)	8.3	5.7	10.1	11.1	11.1	228.31	0	0.05	-	-	0.04	-	
	V	+	M(KINIII/III)	負側(上側引張)	-18.9	-18.1	-31.6	-29.9	31.6	228.31	0	0.14	-	-	0.13	-	
	Ŷ,	미미	V(kN/m)	正側					0.0	228.31	-	-	-	-	0.00	-	
			V(R)/(II)	負側	-32.6	-28.8	-48.4	-47.6	48.4	228.31	-	-	162.68	0	0.00	0.3	
			M(LNm (m)	正側(下側引張)	21.8	21.9	25.3	25.3	25.3	112.51	0	0.22	-	-	0.20	-	
	×-	ち向	w(kinff/ff)	負側(上側引張)	-31.3	-31.2	-21.9	-30.1	31.3	112.51	0	0.28	-	-	0.25	-	
	Χ,	(J 14]	V(kN/m)	正側	78.6	33.9	93.8	65.9	93.8	78.55	-	-	112.76	0	0.00	0.8	
管部			V(KIV/M)	負側	-32.8	-80.8	-105.7	-60.2	105.7	78.55	-	-	112.76	0	0.00	0.9	
底版			M(kNm/m)	正側(下側引張)	50.4	49.9	93.8	104.7	104.7	166.96	0	0.63	-	-	0.57	-	
	V	+	wi(KINM/ M)	負側(上側引張)	-9.8	-10.6	-12.1	-29.7	29.7	166.96	0	0.18	-	-	0.16	-	
	Y方向	方向	W(LNL/m)	正側	55.9	77.8	62.8	121.8	121.8	117.00	_	-	129.12	0	0.00	0.9	
		V(kN/m)	各個			-4.0		4.0	75.30	-	-	11116	0	0.00	0.0		

05. 震度法およびプッシュオーバー解析による配水施設の耐震照査

MIDAS TECHNICAL DOCUMENT

上下水道施設

06. 耐震性能照查

CONSTRUCTION COLLECTION

昭和30年代に建設された沈砂池の

06. 昭和30年代に建設された沈砂池の耐震性能照査

昭和 30 年代	代に建設された沈砂池の耐震性
解析種別	2次元静的線形解析
キーワード	沈砂池、震度法、限界状態設計法、耐
解析の目的	昭和 30 年代に建設された原設計計算 震補強対策を検討する。
解析の概要	 構造物の短辺方向について代表断面 常時荷重および地震時土圧、地震調じて部材断面力を算定する。 部材照査は、常時、レベル1地震時にては限界状態設計法により行う。 レベル2地震時については、主部をついては耐力照査のみを行う。
	STAF
	▲ 耐震補強 新面力の算定
	断面耐力の算 _{主部材②}
	部材の当
	破壊モート
検討の流れ	
	■ NO 曲げ耐力に家
	YES
	せん断耐力に
	YES
	END
	レベル2地震動における
関連資料	・水道施設耐震工法指針・解説 2009
担当者の所見	 ・主部材、副部材の選定は構造部材の特 ・部材には竣工時及び改修時の部材が消 検討断面を選定した。 ・代表断面においては、地下外周擁壁及

能照査

「震照査

書が不明な沈砂池の耐震照査を行い、必要に応じて耐 面を設定し、2次元フレームモデルを作成する。 時動水圧、地震慣性力等を載荷し、荷重の組合せに応 こついては許容応力度法により、い №2 地震時につい 対①は耐力照査とともに破壊形式の判定、主部材②に RT 耐震補強 \vec{E} (M_d, N_d, V_d) NO 等価せん断 〔定(M_{ud},V_{yd}) スパン法 による照査 判定 YES 主部材① NO (せん断) ドの確認 YES 最小主鉄筋量? NO YES せん断耐力に対する照査 対する照査 NO 対する照査 主部材の限界状態設計法での照査手順 9年版 社団法人日本水道協会 寺性を把握し、適切に設定する必要がある。 昆在するため、それぞれの部材について評価できるよう 及び沈砂池は一体のモデルとして解析した。

昭和 30 年代に建設された沈砂池の耐震性
 解析モデル <部材条件> ・構造部材は、底板、外壁、隔壁、擁壁とする。 ・構造部材の接合部には剛域を考慮し、剛域端は部材 ・長期・短期の荷重時の構造部材の剛性は、全断面有 ・部材のモデル化は単位奥行きあたりの梁要素とする。 ・建屋荷重は、擁壁基部に集中荷重として載荷する。 ・覆蓋は重量のみを考慮し、集中荷重として載荷する。 く境界条件> ・底板および外壁要素には地盤反力として要素面積に
く載荷荷重例>
北震時動

能照査

ハンチ端あるいはフェイス位置とする。 効として算定する。

応じた地盤ばねを設定する。

昭和 30 年代に建設された沈砂池の耐震性能照査

L1 地震時許容応力度照査出力例

許容応力度照査 CASE1-3 L1_一部满水-左方向加力 断面定数 **裕生断面**力 Md Nd Vd (kNm) (kN) (kN) h (m) $\sigma \ c$ b (m) No. 昭香筒所 m3) (mm2) σ c/ 1 1 0.0 10.2 13.0 1.000 0.300 0.250 0.0150 0.0 0. 0.3 0.0 左側壁 -9.1 36.1 -30.1 1.000 0.500 0.450 0.0417 -213.4 76.6 -129.4 1.000 0.700 0.650 0.0817 2 3 4 5 6 7 7 8 9 9 10 11 11 12 13 14 北砂油 15 16 16 17 18 19 20 21 21 22 23 24 22 23 24 25 26 27 28 9 20 21 22 23 24 23 24 33 3 '央 0.4 48.8 1.2 1.000 0.300 0.2 0.0150 0.2 0. 左隔壁 3.1 59.3 1.8 1.000 0.300 0.250 0.0150 0.4 0.1 中央 -15.7 1.000 0.300 0.3 1.2 1.000 0.300 0.3 0.5 0.4 5 0.015中央隔壁 中央 3.9 63.7 5.5 1.000 0.300 0.250 0.0150 0.4 0.1 NH Sala 31.5 75.2 33.5 1.000 0.300 4.3 0. 0.4 53. 1.2 1.000 0.300 0 0.2 0. - 22 右隔壁 1.9 1.000 0.300 0.250 0.0150 1史 3.1 63.7 0.4 0.1 111 -4.0 75.2 -14.9 1.000 0.300 0 0.5 0. 0.0 34.5 -36.4 1.000 0.300 0.250 0.0150 -3.8 49.3 38.2 1.000 0.450 0.400 0.0338 0.1 0.0 右面影 法砂油 0.2 0. 吵 湯 246.3 76.8 198.9 1.000 0.600 0.550 060 5.2 0. 336.6 0.0 79.4 1.000 0.700 0.6 0.081 5.2 0. 48.9 1.000 0.700 0.620 7.7 1.000 0.700 0.620 底版① 中央部 241.2 0.0 4.5 0. - 149, 52 120010 218.7 0.0 0.081 3.4 0.3 -12.0 0.0 46.7 1.000 0.600 0.5 0.3 0. 223 底版② 1.1 0. 0.4 0.0 (講習 17.0 0.0 -63.3 1.000 0.600 0.520 0.0600 : 283 -23.8 0.0 -8.1 1.000 0.600 0.520 .060 -4.9 0.0 -26.2 1.000 0.600 0.520 0 70.2 0.0 -55.1 1.000 0.600 0.520 0 底版③ 0.1 0.0 中央部 1.5 0. 調調 0.0601三端部 132.3 0.0 -23.2 1.000 0.600 0.520 2.9 0. 6.5 0.7 底版① 中央部 228.0 0.0 -101.6 1.000 0.600 0. 右躡部 433.5 0.0 -130.0 1.000 0.600 0.5 9.6 1.0 左側下端 1.5 21.1 0.9 1.000 0.350 0.300 0.1 0.1 右側下端 45.8 21.2 42.7 1.000 0.350 0.300 4.7 0.3 冶御床版主側 10.3 0.0 -18.2 1.000 0.400 0.350 0.0267 冶注御床版渔側 12.7 0.0 5.8 1.000 0.450 0.400 0.0338 0.6 0.0 0.5 0. イ/側状版上側 -6.1 0.0 -3.7 1.000 0.400 0.350 0.0267 イ/側状版池側 49.1 0.0 -29.2 1.000 0.450 0.400 0.0338 0.1 0.0 2.0 0.

L2 地震時耐力照査出力例

<u>耐</u> 力																					
	C	ASE2-1	ь.	光	生跗面	力 				1	耐力判	定				Mud			裏モ-	・ド判定	
Niu	1.2 空水	三有方间加 - 昭本笃証	01	Md (hNm)	Nd (I-NI)	Vd (I-NI)	γi	Mud (IrNem)	y i•Md /Mud	安全率	田け	Vyd (EN)	γi•Vd /Væd	安全率	せん断	$\rho m_{1,Z}$	L (m)	Vinu (I-Ni)	γi	γi•Vmu /Vad	判定
100.		思问问り	巨海	0.0	37.1	63.1	1.0	50.11	7 Muu 0.00			86.00	0.73	136		56.48	3.065	18.43	1.0	0.21	山王破壊
- 1		左側辟	⊥.×m dt.dt.	6.5	61.0	84.4	1.0	383 33	0.00	50.95	0	201.40	0.10	9.30	0	453.16	3.065	147.85	1.0	0.21	曲守破滅
3			下端	-564.7	99.3	-351.6	1.0	-579.86	0.02	1.03	0	243 79	1 44	0.69		-685.51	3.065	-223.66	1.0	0.10	曲汗破滅
4			上湯	0.01.1	48.8	2.1	1.0	49.74	0.01	76.52	õ	88.65	0.02	42.62	0	57.45	4 86	11.82	1.0	0.13	曲げ破壊
5		左膈壁	中中	-5.8	59.3	-5.4	1.0	-51.06	0.01	8.86	0	89.66	0.06	16.51	0	-58.72	4.86	-12.08	1.0	0.13	曲げ破壊
6			下端	-17.0	70.8	-8.3	1.0	-52.49	0.32	3.10	Õ	90.77	0.09	10.91	Ő	-60.07	4.86	-12.36	1.0	0.14	曲げ破壊
7			上端	0.7	53.2	2.1	1.0	50.29	0.01	77.37	ŏ	89.07	0.02	42.82	Õ	57.99	4.86	11.93	1.0	0.13	曲げ破壊
8	中央隔壁	中央	-5.8	63.7	-5.4	1.0	-51.60	0.11	8.96	Õ	90.08	0.06	16.59	Ő	-59.26	4.86	-12.19	1.0	0.14	曲げ破壊	
9			下端	17.0	75.2	8.3	1.0	53.04	0.32	3.13	Õ	91.19	0.09	10.96	Ő	60.55	4.86	12.46	1.0	0.14	曲げ破壊
10			上端	-0.7	53.2	-2.1	1.0	-50.29	0.01	77.37	Ó	89.07	0.02	42.82	Ó	-57.99	4.86	-11.93	1.0	0.13	曲げ破壊
11		右隔壁	中央	-5.8	63.7	-5.4	1.0	-51.60	0.11	8.96	0	90.08	0.06	16.59	0	-59.26	4.86	-12.19	1.0	0.14	曲げ破壊
12			下端	-17.0	75.2	-8.3	1.0	-53.04	0.32	3.13	0	91.19	0.09	10.96	С	-60.55	4.86	-12.46	1.0	0.14	曲げ破壊
13			上端	0.0	20.7	-11.1	1.0	85.78	0.00	-	0	111.27	0.10	9.99	0	99.61	2.43	40.99	1.0	0.37	曲げ破壊
14	沈砂池 右侧壁	中央	-3.0	38.8	13.3	1.0	-79.61	0.04	26.45	0	182.33	0.07	13.68	0	-90.63	2.43	-37.29	1.0	0.20	曲げ破壊	
15			下端	130.8	72.3	122.6	1.0	426.00	0.31	3.26	0	214.06	0.57	1.75	0	503.46	2.43	207.18	1.0	0.97	曲げ破壊
16			左端部	928.9	0.0	193.1	1.0	528.10	1.76	0.57	×	219.28	0.88	1.14	0	625.59	3.5	178.74	1.0	0.82	曲げ破壊
17		底版①	中央部	684.0	0.0	173.9	1.0	285.13	2.40	0.42	X	174.04	1.00	1.00	0	333.79	3.5	95.37	1.0	0.55	曲げ破壊
18			右端部	527.1	0.0	89.1	1.0	528.10	1.00	1.00	0	219.28	0.41	2.46	0	625.59	3.5	178.74	1.0	0.82	曲げ破壊
19			左端部	61.7	0.0	83.3	1.0	387.74	0.16	6.28	0	194.76	0.43	1.17	0	457.64	2.15	212.86	1.0	1.09	せん断破
- 20		底版②	中央部	32.1	0.0	23.2	1.0	387.74	0.08	12.07	0	194.76	0.12	4.19	0	457.64	2.15	212.86	1.0	1.09	せん断破場
21			右端部	-24.3	0.0	-23.7	1.0	-189.60	0.13	7.81	0	146.69	0.16	6.20	0	-219.28	2.15	-101.99	1.0	0.70	曲げ破壊
22			左端部	-0.7	0.0	33.6	1.0	-189.60	0.00	256.21	0	146.69	0.23	4.36	0	-219.28	2.15	-101.99	1.0	0.70	曲げ破壊
23		底版③	中央部	29.0	0.0	6.4	1.0	387.74	0.07	13.36	0	194.76	0.03	15.17	0	457.64	2.15	212.86	1.0	1.09	せん断破損
24			右端部	22.6	0.0	-49.6	1.0	387.74	0.06	17.13	0	194.76	0.25	1.96	0	457.64	2.15	212.86	1.0	1.09	せん断破場
25			左端部	75.2	0.0	0.6	1.0	387.74	0.19	5.16	0	194.76	0.00	309.15	0	457.64	4.3	106.43	1.0	0.55	曲げ破壊
26		底版①	中央部	114.1	0.0	-55.0	1.0	189.60	0.60	1.66	0	146.69	0.37	2.67	0	219.28	4.3	50.99	1.0	0.35	曲げ破壊
27			右端部	247.0	0.0	-95.2	1.0	387.74	0.64	1.57	0	194.76	0.49	2.05	0	457.64	4.3	106.43	1.0	0.55	曲げ破壊
28		左側 右側		62.2	21.2	57.3	1.0	54.57	1.14	0.88	X	92.75	0.62	1.62	0	63.96	3.7	17.29	1.0	0.19	曲げ破壊
29				-2.7	21.1	-2.1	1.0	-54.57	0.05	19.99	0	92.75	0.02	45.24	0	-63.96	3.7	-17.29	1.0	0.19	曲げ破壊
30	· 擁壁 左側床肌		<u>k</u> 土側	-12.5	0.0	11.4	1.0	-116.88	0.11	9.33	0	124.38	0.09	10.94	0	-137.15	1.8	-76.20	1.0	0.61	曲げ破壊
31	1/#至 左侧床		友池側	61.1	0.0	37.0	1.0	141.85	0.43	2.32	0	131.50	0.28	3.55	0	137.15	1.6625	82.50	1.0	0.63	曲げ破壊
32		右側床間	友士側	11.1	0.0	19.1	1.0	116.88	0.10	10.52	0	124.38	0.15	6.52	0	137.15	1.8	76.20	1.0	0.61	曲げ破壊
- 33		右側床間	反池側	12.4	0.0	-5.0	1.0	141.85	0.09	11.47	0	131.50	0.04	26.25	$ \circ $	137.15	1.6625	82.50	1.0	0.63	曲げ破壊

				許容応力	度判定					
	σ ca=	9.0	σs		σ sa=	210	τm		t al=	0.6
σ са	安全率	制定	(N/mm2)	σs/σsa	安全率	刊定	(N/mm2)	tm/tal	安全率	判定
00	-	0	-0.4	0.00	525.00	0	0.043	0.07	13.95	0
)3	30.00	0	2.5	0.01	84.00	0	0.067	0.11	8.96	0
37	2.73	0	88.2	0.42	2.38	0	0.199	0.33	3.02	0
)2	45.00	0	-2.1	0.01	-	0	0.004	0.01	-	0
94	22.50	0	-0.9	0.00	-	0	0.006	0.01	-	0
)6	18.00	0	-0.2	0.00	-	0	0.052	0.09	-	0
)2	45.00	0	-2.3	0.01	-	0	0.004	0.01	-	0
14	22.50	0	-0.5	0.00	-	0	0.018	0.03	-	0
8	2.09	0	150.3	0.72	-	0	0.134	0.22	-	0
)2	45.00	0	-2.3	0.01	-	0	0.004	0.01	-	0
И	22.50	0	-1.1	0.01	-	0	0.006	0.01	-	0
)6	18.00	0	-1.1	0.01	-	0	0.050	0.08	-	0
)1	90.00	0	-1.5	0.01	140.00	0	0.121	0.20	4.96	0
)2	45.00	0	-0.5	0.00	420.00	0	0.084	0.14	7.14	0
58	1.73	0	141.5	0.67	1.48	0	0.362	0.60	1.66	0
58	1.73	0	160.7	0.77	1.31	0	0.128	0.21	4.69	0
i0	2.00	0	224.9	1.07	0.93	×	0.079	0.13	7.59	0
8	2.65	0	104.5	0.50	2.01	0	0.012	0.02	50.00	0
)3	30.00	0	17.9	0.09	11.73	0	0.090	0.15	6.67	0
2	8.18	0	32.4	0.15	6.48	0	0.018	0.03	33.33	0
14	22.50	0	11.2	0.05	18.75	0	0.122	0.20	4.92	0
)8	12.86	0	35.5	0.17	5.92	0	0.015	0.03	40.00	0
)1	90.00	0	3.2	0.02	65.63	0	0.050	0.08	12.00	0
7	6.00	0	46.0	0.22	4.57	0	0.106	0.18	5.66	0
32	3.10	0	86.8	0.41	2.42	0	0.045	0.08	13.33	0
2	1.38	0	340.4	1.62	0.62	×	0.195	0.33	3.08	0
)7	0.94	×	284.5	1.35	0.74	×	0.250	0.42	2.40	0
)1	90.00	0	-0.1	0.00	2100.00	0	0.002	0.00	300.00	0
52	1.91	0	233.5	1.11	0.90	×	0.142	0.24	4.23	0
)7	15.00	0	23.1	0.11	9.09	0	0.052	0.09	11.54	0
)6	18.00	0	23.2	0.11	9.05	0	0.014	0.02	42.86	0
14	22.50	0	14.3	0.07	11.69	0	0.010	0.02	60.00	0
22	4.50	0	89.4	0.43	2.35	0	0.069	0.12	8.70	0

06. 昭和30年代に建設された沈砂池の耐震性能照査

MIDAS CONSTRUCTION TECHNICAL DOCUMENT COLLECTION

上下水道施設

07. 清見配水池耐震診断

RBオリジナルコンサルタント株式会社

解析種別	3次元FEM解析
キーワード	配水池 耐震補強 FEM
解析目的	耐震補強の概略設計
解析概要	3次元FEM解析により、構造物全 各要素毎の作用断面力を用い、 と
解析流れ	 ・3次元解析モデルの作成 ・作用荷重の設定 ・解析ケースの設定 FEM解析 解析結果を用いた断面照査 OK 補強無し ・
関連資料	道路橋示方書V (H24.3) 水道施設耐震工法指針・解説(2009) 水道用プレストレストコンクリートタンク設
担当者の所見	断面照査にて超過箇所 (NG)が発生した 今回はそれらを考慮せずに、断面照査の

07. 清見配水池耐震診断 - RBオリジナルコンサルタント株式会社

07. 清見配水池耐震診断 - RBオリジナルコンサルタント株式会社

MIDAS CONSTRUCTION TECHNICAL DOCUMENT COLLECTION

上下水道施設

08. 豊田配水池耐震診断

RBオリジナルコンサルタント株式会社

解析種別	3次元FEM解析
キーワード	配水池 耐震補強 FEM
解析目的	耐震補強の概略設計
解析概要	3次元FEM解析により、構造物全 各要素毎の作用断面力を用い、M
解析流れ	 ・3次元解析モデルの作成 ・作用荷重の設定 ・解析ケースの設定 FEM解析 解析結果を用いた断面照査 OK 補強無し ・
関連資料	道路橋示方書V (H24.3) 水道施設耐震工法指針・解説(2009)
担当者の所見	断面照査にて超過箇所(NG)が発生した 今回はそれらを考慮せずに、断面照査0

08. 豊田配水池耐震診断 - RBオリジナルコンサルタント株式会社

MIDAS TECHNICAL DOCUMENT

上下水道施設

09. PCタンクの耐震診断 日中コンサルタント株式会社

CONSTRUCTION COLLECTION

キーワード PCタンク、耐震診断、静的解析。動的角 解析目的 水道用プレストレストコンクリートタンクの 解析概要 PCタンクの側壁、底版および屋根を一、 水平方向、鉛直方向の線形バネによっ 解析概要 PCタンクの側壁、底版および屋根を一、 水平方向、鉛直方向の線形バネによっ 解析での料理 ************************************	解析種別	PCタンクの耐震診断
解析目的 水道用プレストレストコンクリートタンクの 解析概要 PCタンクの側壁、底版および屋根を一 水平方向、鉛直方向の線形パネによっ 解析概要 PCタンクの側壁、底版および屋根を一 水平方向、鉛直方向の線形パネによっ 解析 「「」」」 解析 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」」 「」」」」	キーワード	PCタンク、耐震診断、静的解析。動的解
解析概要 PCタンクの側壁、底版および屋根を一 水平方向、鉛直方向の線形パネによっ 解析概要 「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	解析目的	水道用プレストレストコンクリートタンクの
 解析流れ 解析流れ 成正教育の現代 中国の気代登現、地理種別の判定 中国の気代登現、地理種別の判定 中国の気代登現、地理様別の規定 中国の気代登現、市内に 中国の気代登現、市内に 中国の気代登現、市内に 中国の気代登現、市内に 中国の気代登現、市内に 中国の気代 中国の気代	解析概要	PCタンクの側壁、底版および屋根を一 水平方向、鉛直方向の線形バネによっ
関連資料 水道施設耐震工法指針・解説、2009年 水道用プレストレストコンクリートタンク設 協会 貯水用円筒形PCタンク設計施工規準、 協会 担当者の所見	解析流れ	地質の条件整理、地盤種別の判定 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ の 本 一 の 第 前 面 可 … ・ の の 第 一 の 第 の の 第 の の 第 の の 第 の の 第 の の 第 の の の の の の の の の の の の の
担当者の所見	関連資料	水道施設耐震工法指針・解説、2009年 水道用プレストレストコンクリートタンク設 協会 貯水用円筒形PCタンク設計施工規準、 協会
	担当者の所見	

http//jp.midasuser.com/civil 105

09. PCタンクの耐震診断 -日中コンサルタント株式会社

解析

の耐震診断

・体として、3次元FEMにモデル化する。地盤に関して、 ってモデル化する。

≤版、(社)日本水道協会 殳計施工指針・解説、1998年版、(社)日本水道

、2005年版、(社)プレストレストコンクリート技術

配水所2号池(水道用プレストレストコンクリートタンク)の耐震診断方法および診断結果に関して述べ たものである。 2.解析モデル PCタンクの側壁、底版および屋根を一体として、3次元FEMにモデル化する。地盤に関して、 水平方向、鉛直方向の線形バネによってモデル化する。 図 7.1 PC タンクの全体モデル 図 7.3 屋根のモデル

1.概要

図 7.2 横から見た全体モデルの半分

図 7.4 側壁と底版のモデル

3.解析条件

タンクの耐震診断に用いられる設計水平震度は、「水道耐震指針より、方法4で算出する。 方法4:「PCタンク指針」に基づき、地盤種類およびPCタンクの固有周期より算出する。

4.解析結果

レベル1地震動時のNG箇所

PC タンク側壁

注: NG 箇所は無し

PC タンク底版

注: 黒字で表示する要素は鉄筋曲げ応力度照査による NG 箇所

						_
	-					
-					<u> </u>	_
				<u> </u>		_
h						
h						
-						
		<u> </u>				_
~~~~						
-						
	_	H				
	_					
			_	_		
_						
		-	-		_	_
		_	-			
-						
-						
			<u> </u>			
						_
		t				
-						
_						
· · · ·						
						_
						_
-						
						_
				_		_
-		_				





Copyright $\odot$  Since 1989 MIDAS Information Technology Co., Ltd. All rights reserved.