MIDAS CONSTRUCTION TECHNICAL DOCUMENT COLLECTION

圧密•浸透(軟弱地盤)分野 3

MIDAS CONSTRUCTION TECHNICAL DOCUMENT COLLECTION

圧密·浸透(軟弱地盤)分野

3.

軟弱地盤材料の 構成パラメータ同定方法

中央大学 太田秀樹 教授

MIDAS 地盤技術セミナー (平成27年10月22日 14:10-15:40)

軟弱地盤材料の 構成パラメータ同定方法

中央大学 太田秀樹

発表内容概要

初期条件と境界条件 地盤の初期応力状態の具体的な計算方法を説明 施工手順などを簡略化せず 細かく入力すること

今日のメイン ⇒ カンニングのすすめ 沈下や変形などの実測値とよくあう妥当な解析結果 これまでにどのような工夫が凝らされてきたのか 土質試験から構成パラメータをどのようにして決めるか

理論的な模索もふくめて 実際の解析例を中心に紹介

発表内容概要

通り一遍に取り扱われることが多い地盤の初期応力状態の設定方法について 具体的な計算方法を説明する

多種多様な軟弱地盤材料の土質試験結果から構成パラメータをどのようにして決めてゆくとよいか

結果的に 沈下や変形などの実測値とよくあう 妥当な解析結果を得るために これまでにどのような工夫が凝らされてきたのか

理論的な模索もふくめて 実際の解析例を中心に紹介する

初期条件

1. 間隙水圧
$$u$$

2. 上載圧 σ_v
3. 有効上載圧 $\sigma'_v = \sigma_v - u$
4. 有効水平応力 $\sigma'_h = K_0 \sigma'_v$
5. 水平応力 $\sigma_h = \sigma'_h + u$

状態	正規圧響	密 過 圧 密
構造	ゆるい構造	密な構造
全応力 間隙水圧 有効応力	$\sigma_{v} = \rho \cdot z + \rho_{w}(d - z)$ - <u>) u = \rho_{w} \cdot d</u> $\sigma_{v}' = (\rho - \rho_{w})z$ 水中重量	$\sigma_{v} = \rho \cdot z$ $- \underbrace{) \ u = \rho_{w} \cdot d}_{\sigma_{v}'} = \underbrace{(\rho - \rho_{w})d + \rho(z - d)}_{$ 水面下重量 水面上重量

(100kPa=10tf/m²=1kgf/cm²)

82 MIDAS 圧密・浸透 (軟弱地盤)分野

解析事例

- A. 1次元圧密と2次元圧密のちがい
 九州横断道武雄北方インターチェンジ
 道央自動車道 札幌-岩見沢間の盛土沈下
 秋田自動車道 傾斜基盤上の盛土
- B. 超軟弱地盤でのいろいろな事例

大沢郷

スリランカ南部道路

すじみち

- 1. 問題の所在と研究のネライ
- 2.1次元圧密と2次元圧密のちがい
- 3. Terzaghiの圧密理論と三笠の圧密理論
- 4. 九州横断道武雄北方インターチェンジにおけるプレロード盛土
 道央自動車道 札幌-岩見沢間の盛土沈下
 秋田自動車道 傾斜基盤上の盛土
- 5. 超軟弱地盤でのいろいろな事例

大沢郷

スリランカ南部道路

1. 問題の所在と研究のネライ

1次元圧密解析:

過去の経験からみて計算による予測の信頼性が十分でないと、

感じている技術者が多い

でも

十分な安全率を確保しながら施工する場合:

破壊からほど遠い状態で施工しており、

粘土層のせん断にともなう側方流動が大きくないのであるから,

1次元圧密解析で沈下一時間関係を計算しても、

極端に実態と合わないわけではなかろう

2.1次元圧密と2次元圧密のちがい

盛土のセンター直下であっても

粘土層が1次元圧密をしている訳ではないことに注意

\bigcirc	8	8	00	00		N. *	ж. ж	¥	*	*				
		幅狭	·盛土 4	盛土幅B∕	「軟弱粘土」	屠厚D = 6	.9							
										Bass				
8	00	00				ţ	Ĩ.	N	*	*				
		幅広	、盛土	惑土幅B∕	「軟弱粘土」	屠厚D = 1	3.0							
						ļ	ļ	ļ	ļ	ļ				
○ 盾	長大・ 最小主	一次 Eひずみに	ステ圧密 引 よる変形し	盚土幅Bノ た円(ひず	/軟弱粘土 / ・みを2.5倍家	層厚D = ○ 長示) 🔪	o 変位ベクト	ル(変位を2	2.0倍表示)					

3. Terzaghiの圧密理論と三笠の圧密理論

Terzaghiの圧密理論:

透水係数kと体積圧縮係数m、がともに一定値

三笠の圧密理論:

透水係数kや体積圧縮係数m_vがそれぞれ不変だとの仮定が不必要 その比である圧密係数Cvが一定でありさえすればいい

4.

九州横断道武雄北方インターチェンジ 道央自動車道 札幌-岩見沢間の盛土沈下 秋田自動車道 傾斜基盤上の盛土

九州横断道武雄北方インターチェンジ

中央大学 太田 秀樹 教授

	(1) $K_0 = 0.44 + 0.42 \times 10^{-2} Ip$	Massarsch (1979)
	(2) $v' = K_0 / (1 + K_0)$	
	(3) $K_i = K_0 (OCR)^m$	
	$m = 0.54 \exp(-Ip/122)$ (for Clay)	Alpan (1967)
	(4) $\sigma'_{vi} = \gamma_t \ z \ - \ p_w$	
	(5) $OCR = \sigma'_{v0} / \sigma'_{vi}$	
	$(6) \lambda = 0.434 C_C$	
	(7) $\overline{C}_s = C_c / 10$	
	(8) $\overline{C}_s / C_s = 1 - \log \beta / \log(OCR)$	
	$\beta = (1 + 2K_i) / (1 + 2K_0)$	
	(9) $\kappa = 0.434 C_s$	
((10) $\Lambda = 1 - \kappa / \lambda$	
($(11) e_i = G_S w_n$	
((12) $e_0 = e_i - \lambda (1 - \Lambda) \ln(\overline{OCR})$	
	$\overline{OCR} = OCR \ (1 + 2K_0) \ /(1 + 2K_i)$	
((13) $D = \lambda \Lambda / (M(1 + e_0))$	Ohta (1971)
((14) $m_V = 3 \lambda / ((1 + e_0)(1 + 2K_0)\sigma'_{v0})$	
($(15) k = m_V c_V \gamma_w$	
((16) $t_c = H^2 T_V(90\%) / c_V$	Sekiguchi (1977)
((17) $\alpha_e / \lambda = 0.05 \pm 0.02$ (for Peat)	
	$\alpha_e / \lambda = 0.07 \pm 0.02$ (for Clay)	Mesri & Godlewshi (1977)
((18) $\alpha = \alpha_e / (1 + e_0)$	Sekiguchi (1977)
((19) $\dot{v}_0 = \alpha / t_c$	Sekiguchi (1977)
((20) $Ip = 0.67(W_L - 16)$	
((21) $C_c = 0.012(W_t + 50)$	

3軸試験に	よって得られ	れた内部層	隆擦角	ϕ'			
•有明粘:	土の特性(松	·村·三浦,	1990)				
試料名	佐賀大学	兵庫粘土	諸富(1)	諸富(2)	蓮池粘土	白石(1)	白石(2)
	1.355	1.242	1.587	1.356	1.065	1.587	1.500
м	2	2	2	2	2	2	≀
	1.437	1.490	1.622	1.508	1.266	1.622	1.537
長崎横断自 武雄北方I.C.	動車道	兵庫料 本 佐賀大学	道之 重池粘土	塑 M = M =	2性指数 I ₁ 0.91(¢ 0.96(¢	,による推 が=23.3 が=24.5	定値 deg.) deg.)
	C 石 粘土 有 I 試料採取	明海 X場所		三 [[] 三	軸試験結 :1.40(¢	果に基づく が=34.6	值 deg.)

土質定数と境界条件

	m	kN/m^3											
section	depth	γ_t	Λ	М	<i>v</i> '	K_0	K _i	α	\dot{v}_0	λ	e_0	OCR	k/γ_w
fill		20.00					<i>E</i> =	= 25.00 Mpc	ı				1.00E+01
Ac1	0.0~1.0	13.00					<i>E</i> =	= 5.00 Mpa					1.44E-03
Ac2	1.0~2.5	13.00	0.80	1.40	0.41	0.69	1.31	8.18E-03	1.64E-05	0.74	3.51	4.00	1.44E-03
Ac3	2.5~4.0	13.00	0.80	1.40	0.39	0.65	1.02	8.18E-03	1.64E-05	0.74	3.51	3.50	1.44E-03
Ac4	4.0~5.0	13.50	0.80	1.40	0.39	0.65	0.91	8.18E-03	1.64E-05	0.74	3.51	3.00	1.44E-03
Ac5	5.0~7.0	13.50	0.80	1.40	0.39	0.65	0.88	8.18E-03	1.64E-05	0.74	3.51	2.50	1.44E-03
Ac6	7.0~9.0	13.50	0.80	1.40	0.39	0.65	0.85	8.18E-03	1.64E-05	0.74	3.51	2.50	1.00E-03
Ag		16.00					<i>E</i> =	= 60.00 Mpc	1				1.00E-03
Fill, Crust and Gravel : Description Linear-elastic Material													
Clay		Elast	to-vise	coplas	tic M	aterial							

P1

中央大学 太田 秀樹 教授

(1)	$\sin \phi' = 0.81 - 0.233 \log I_{\rm p}$	Kenny (1959)
(2)	$K_0 = 0.44 + 0.42 \times 10^{-2} I_p$	Massarsch (1979)
(3)	$K_0 = 1 - \sin \phi'$	Jaky (1944)
(4)	$M = 6\sin\phi' / (3 - \sin\phi')$	
(5)	$V' = K_0 / (1 + K_0)$	
(6)	$(q_u/2\sigma'_{v0})_{NC}=1/(OCR)^A(q_u/2\sigma'_{v0})_{OC}$	Ohta (1988)
(7)	$(S_u / \sigma'_{v0})_{CKOUC} = \mu (q_u / 2 \sigma'_{v0})_{NC}$	Ohta (1988)
(8)	M determined using (S _u /2 $\sigma'_{\rm V0}$) _{CK0UC}	Ohta (1988)
(9)	$\lambda = 0.434 C_{\rm c}$	
(10)	$\overline{C_s}/C_s = 1 - \log \beta / \log(OCR)$	
	$\beta = (1+2 K_{\rm i})/(1+2K_0)$	
(11)	$\kappa = 0.434 C_{\rm s}$	
(12)	$\Lambda = 1 - \kappa / \lambda$	
(13)	$\Lambda = M/1.75$	Karube (1975)
(14)	$m_v = 3 \lambda / ((1+e_0)(1+2 K_0) \sigma'_{v0})$	
(15)	$k = m_{\rm v} C_{\rm v} \gamma_{\rm w}$	
(16)	$t_{\rm c} = H^2 T v(90\%) / C_{\rm v}$	Sekiguchi (1977)
(17)	$\gamma_{\rm t} = G_{\rm s} \gamma_{\rm w} (1 + \mathbf{w}_{\rm n}) / (1 + G_{\rm s} \mathbf{w}_{\rm n})$	
(18)	$\sigma'_{\rm vi} = \gamma_{\rm t} z - p_{\rm w}$	
(19)	$OCR = \sigma'_{v0} / \sigma'_{vi}$	
(20)	$e_i = G_s \mathbf{w}_n$	
(21)	$e_0 = e_{i^-} \lambda (1 - \Lambda) \ln(OCR)$	
	$OCR = OCR (1+2K_0)/(1+2K_i)$	
(22)	$\alpha_{\rm c} / \lambda = 0.05 \pm 0.02$ (for clay)	Mesri&
	$\alpha_{\rm e}/\lambda = 0.07 \pm 0.02$ (for peat)	Godlewshi (1977)
(23)	$K_{i} = K_{0}(OCR)^{m}$	Alpan (1967)
	$m = 0.54 \exp(-I_p/122) + 0.45$ (for clay)	
(24)	$D = \lambda \Lambda / (M(1+e_0))$	Ohta (1971)
(25)	$\alpha = \alpha_{\rm c}/(1+e_0)$	Sekiguchi (1977)
(26)	$\dot{v}_0 = \alpha / t_c$	Seki guchi(1977)
(27)	$\phi' = 0.19 Lig + 32 \text{(for peat)}$	Hayashi (2005)
(28)	$K_{\rm i} = K_0 (OCR)^m$	Hayashi (2006)
	m = 0.005 Lig + 0.45 (for peat)	

	clay (Am1)	clay(Am2-1)
$w_{n}(\%)$ - <i>Lig</i> (\%)	-	-
$w_{\rm n}$ (%)- $w_{\rm L}$ (%)	$w_{\rm L} = 0.978 w_{\rm n} + 6.85$	w _L =0.826 w _n +8.22
$w_{\rm n}$ (%)- $e_{\rm i}$	$e_{\rm i}$ =2.75 $w_{\rm n}$ /100	$e_i = 2.74 w_n / 100$
$w_{\rm L}$ (%)- $I_{\rm p}$ (%)	$I_{\rm p}=0.77(w_{\rm L}-17)$	$I_{\rm p}$ =0.80($w_{\rm L}$ -17)
$w_{\rm L}$ (%)- $C_{\rm C}$	$C_{\rm C}$ =0.015($w_{\rm L}$ -20)	$C_{\rm C}=0.016(w_{\rm L}-20)$
C _C -C _S	$C_{\rm S} = C_{\rm C} / 10$	$C_{\rm S} = C_{\rm C} / 10$
$OCR-\sigma'_{vi}$ (kN/m ²)	<i>OCR</i> =4.02-0.594ln(σ' _{vi})	<i>OCR</i> =3.14-0.406ln(σ' _{vi})
	clay(Am2-2)	peat(Ap2-2)
$w_{\rm n}$ (%)- <i>Lig</i> (%)	-	$w_n = 10 Lig$
$w_{\rm n}$ (%)- $w_{\rm L}$ (%)	$w_{\rm L} = 0.711 w_{\rm n} + 15.45$	-
$w_{\rm n}$ (%)- $e_{\rm i}$	$e_i = 2.65 w_n / 100$	$e_i = w_n / 100 \times 1 / (0.00237 Lig + 0.35)$
$w_{\rm L}$ (%)- $I_{\rm p}$ (%)	$I_{\rm p}$ =0.75($w_{\rm L}$ -15)	-
$w_{\rm L}$ (%)- $C_{\rm C}$	$C_{\rm C}$ =0.014($w_{\rm L}$ -20)	C _C =0.088Lig
$C_{\rm C}$ - $C_{\rm S}$	$C_{\rm S} = C_{\rm C} / 10$	$C_{\rm S} = C_{\rm C} / 10$
$OCR-\sigma'_{vi}(kN/m^2)$	$OCR=4.57-0.633\ln(\sigma'_{vi})$	$OCR=4.08-1.072\ln(\sigma'_{vi})$

砂層と地表面クラストの弾性パラメータ

	constitutive equation	m	m	(%)						kN/m ²		kN/m ²							kN/m ³		
	-	depth	thickness	Wn	D	Λ	М	ν	k/γw	σ'v ₀	K ₀	σ'vi	Ki	α	dV ₀ /dt	λ	e ₀	λk	γt	lame's λ	lame's
fill material	linearly elastic							0.333	8.810E-03			9.90	1.000						19.800	14814	742
capping	linearly elastic							0.333	2.643E-04			4.30	1.000						19.800	3667	183
sandmat	linearly elastic							0.333	8.810E-03			9.07	1.000						18.140	7335	367
peat (Ap2-2)	elasto plastic	$0.0 \sim 0.9$	0.9	726	0.095	0.843	1.887	0.220	9.820E-04	11.30	0.282	4.64	0.582			2.773	11.988	2.773	10.310		
	elasto plastic	$0.9 \sim 1.6$	0.7	726	0.095	0.850	1.887	0.220	4.195E-04	15.81	0.282	9.46	0.428			2.773	12.092	2.773	10.310		
clay (Am2-2)	elasto-visco plastic	$1.6 \sim 3.6$	2.0	44	0.062	0.772	0.940	0.351	3.856E-05	47.43	0.540	17.11	1.344	0.0038	6.104E-06	0.162	1.149	0.162	17.280		
	elasto-visco plastic	$3.6 \sim 5.6$	2.0	44	0.063	0.779	0.940	0.351	1.911E-05	76.12	0.540	32.05	1.170	0.0038	4.854E-06	0.162	1.152	0.162	17.280		
	elasto-visco plastic	$5.6 \sim 7.6$	2.0	44	0.063	0.784	0.940	0.351	1.279E-05	100.23	0.540	46.99	1.063	0.0038	4.277E-06	0.162	1.154	0.162	17.280		
	elasto-visco plastic	$7.6 \sim 8.6$	1.0	44	0.063	0.786	0.940	0.351	1.035E-05	116.25	0.540	58.20	1.003	0.0038	4.015E-06	0.162	1.155	0.162	17.280		
sand (As2-2)	linearly elastic	$8.6 \sim 9.4$	0.8	30				0.333	1.410E-03			65.54	1.000						18.820	7488	375
clay (Am2-2)	elasto-visco plastic	9.4 ~ 10.2	0.8	41	0.057	0.789	1.000	0.348	8.074E-06	134.43	0.533	72.25	0.933	0.0036	2.755E-04	0.149	1.077	0.149	17.560		
sand (As2-2)	linearly elastic	$10.2 \sim 10.6$	0.4	25				0.333	1.410E-03			96.76	1.000						19.540	12481	625
	linearly elastic	$10.6 \sim 12.6$	2.0	25				0.333	1.410E-03			108.44	1.000						19.540	12481	625
	linearly elastic	$12.6 \sim 14.6$	2.0	25				0.333	1.410E-03			108.44	1.000						19.540	12481	625
clay (Am2-1)	elasto-visco plastic	$14.6 \sim 16.0$	1.4	43	0.059	0.807	1.040	0.346	2.716E-05	146.42	0.530	123.66	0.617	0.0038	2.208E-05	0.165	1.175	0.165	17.640		
	elasto-visco plastic	$16.0 \sim 18.0$	2.0	43	0.059	0.808	1.040	0.346	2.203E-05	156.50	0.530	136.97	0.598	0.0038	1.914E-05	0.165	1.176	0.165	17.640		
	elasto-visco plastic	$18.0 \sim 20.0$	2.0	43	0.059	0.810	1.040	0.346	1.754E-05	167.69	0.530	152.64	0.577	0.0038	1.634E-05	0.165	1.177	0.165	17.640		
sand (As2-1)	linearly elastic	$20.0 \sim 20.6$	0.6	30				0.333	1.410E-03			163.18	1.000						18.820	7488	377
clay (Am1)	elasto-visco plastic	$20.6 \sim 21.1$	0.5	45	0.076	0.900	1.070	0.355	1.653E-05	167.80	0.550	167.80	0.550	0.0045	6.337E-06	0.201	1.238	0.201	17.480		
	elasto-visco plastic	$21.1 \sim 23.1$	2.0	45	0.076	0.900	1.070	0.355	1.527E-05	177.39	0.550	177.39	0.550	0.0045	6.188E-06	0.201	1.238	0.201	17.480		
	elasto-visco plastic	$23.1 \sim 25.1$	2.0	45	0.076	0.900	1.070	0.355	1.298E-05	192.73	0.550	192.73	0.550	0.0045	5.714E-06	0.201	1.238	0.201	17.480		
	elasto-visco plastic	$25.1 \sim 27.1$	2.0	45	0.076	0.900	1.070	0.355	1.119E-05	208.07	0.550	208.07	0.550	0.0045	5.320E-06	0.201	1.238	0.201	17.480		
	elasto-visco plastic	$27.1 \sim 29.1$	2.0	45	0.076	0.900	1.070	0.355	9.705E-06	223.41	0.550	223.41	0.550	0.0045	4.952E-06	0.201	1.238	0.201	17.480		
(b) Ebets	u trial embankn	nent of SD)																		
	constitutive equation	m	m	(%)						kN/m ²		kN/m ²							kN/m ³		<u> </u>
		depth	thickness	Wn	D	Λ	М	v	k/γw	σ'v ₀	K ₀	σ'vi	Ki	α	dV ₀ /dt	λ	e ₀	λk	γt	lame's λ	lame's p
C11 1	tion and a standing	-	-					0.222	0.0105.02	- v		0.000	1 000		5		0		10.000	14014	2.404

		depin	thickness	Wn	D	Λ	M	v	K/γW	σv_0	κ ₀	0'V1	KI	α	dv ₀ /dt	٨	e ₀	٨ĸ	γt	lame's λ	lame's µ
fill material	linearly elastic							0.333	8.810E-03			9.900	1.000						19.800	14814	7429
capping	linearly elastic							0.333	2.643E-04			4.300	1.000						19.800	3667	1839
sandmat	linearly elastic							0.333	8.810E-03			9.070	1.000						18.140	7335	3679
peat (Ap2-2)	linearly elastic	$0.0 \sim 0.6$	0.6	726				0.220	1.638E-03		0.282	3.09	0.665			2.773	11.942	2.773	10.310	564	718
	elasto plastic	$0.6 \sim 0.9$	0.3	726	0.095	0.845	1.887	0.220	6.567E-04	13.24	0.282	6.26	0.518			2.773	12.027	2.773	10.310		
	elasto plastic	$0.9 \sim 1.8$	0.9	726	0.095	0.846	1.887	0.220	6.414E-04	13.55	0.282	6.57	0.508			2.773	12.034	2.773	10.310		
clay (Am2-2)	elasto-visco plastic	$1.8 \sim 3.8$	2.0	44	0.055	0.770	1.060	0.351	4.763E-05	41.20	0.540	14.27	1.394	0.0038	6.190E-06	0.162	1.149	0.162	17.280		
	elasto-visco plastic	$3.8 \sim 5.8$	2.0	44	0.055	0.778	1.070	0.351	2.129E-05	71.09	0.540	29.21	1.196	0.0038	4.774E-06	0.162	1.152	0.162	17.280		
	elasto-visco plastic	$5.8 \sim 7.8$	2.0	44	0.055	0.783	1.080	0.351	1.384E-05	95.91	0.540	44.15	1.081	0.0038	4.187E-06	0.162	1.153	0.162	17.280		
	elasto-visco plastic	7.8 ~ 9.0	1.2	44	0.055	0.786	1.080	0.351	1.074E-05	113.37	0.540	56.10	1.013	0.0038	3.841E-06	0.162	1.155	0.162	17.280		
sand (As2-2)	linearly elastic	9.0 ~ 9.8	0.8	30				0.333	1.410E-03			64.19	1.000						18.820	7489	3756
clay (Am2-2)	elasto-visco plastic	9.8 ~ 10.6	0.8	41	0.050	0.789	1.140	0.348	8.261E-06	132.77	0.533	70.90	0.938	0.0036	2.784E-04	0.149	1.077	0.149	17.560		
sand (As2-2)	linearly elastic	$10.6 \sim 12.2$	1.6	30				0.333	1.410E-03			81.21	1.000						18.820	7489	3756
clay (Am2-1)	elasto-visco plastic	$12.2 \sim 14.2$	2.0	39	0.050	0.804	1.110	0.342	4.173E-05	124.13	0.519	96.67	0.652	0.0034	8.298E-04	0.142	1.065	0.142	18.060		
sand (As2-1)	linearly elastic	$14.2 \sim 14.6$	0.4	30				0.333	1.410E-03			106.72	1.000						18.820	4993	2504
clay (Am2-1)	elasto-visco plastic	$14.6 \sim 15.6$	1.0	43	0.065	0.806	0.940	0.346	3.172E-05	137.48	0.530	112.44	0.635	0.0038	2.824E-05	0.165	1.175	0.165	17.640		
	elasto-visco plastic	$15.6 \sim 17.6$	2.0	43	0.065	0.807	0.940	0.346	2.631E-05	146.84	0.530	124.19	0.616	0.0038	2.502E-05	0.165	1.175	0.165	17.640		
	elasto-visco plastic	$17.6 \sim 19.6$	2.0	43	0.065	0.809	0.940	0.346	2.156E-05	158.62	0.530	139.86	0.594	0.0038	2.215E-05	0.165	1.176	0.165	17.640		
silty sand (As2-1)	linearly elastic	$19.6 \sim 20.4$	0.8	30				0.333	1.410E-03			151.30	1.000						18.820	7489	3756
clay (Am1)	elasto-visco plastic	$20.4 \sim 20.9$	0.5	45	0.065	0.813	1.130	0.355	1.864E-05	161.10	0.550	156.83	0.563	0.0045	6.860E-06	0.201	1.237	0.201	17.480		
	elasto-visco plastic	$20.9 \sim 22.9$	2.0	45	0.065	0.814	1.130	0.355	1.772E-05	165.08	0.550	166.41	0.546	0.0045	6.682E-06	0.201	1.238	0.201	17.480		
	elasto-visco plastic	$22.9 \sim 24.9$	2.0	45	0.066	0.900	1.220	0.355	1.476E-05	181.75	0.550	181.75	0.550	0.0045	6.126E-06	0.201	1.238	0.201	17.480		
	elasto-visco plastic	$24.9 \sim 26.9$	2.0	45	0.066	0.900	1.220	0.355	1.257E-05	197.09	0.550	197.09	0.550	0.0045	5.657E-06	0.201	1.238	0.201	17.480		
	elasto-visco plastic	$26.9\ \sim\ 28.9$	2.0	45	0.066	0.900	1.220	0.355	1.075E-05	212.43	0.550	212.43	0.550	0.0045	5.217E-06	0.201	1.238	0.201	17.480		

 Prediction of long-term performance of NF-1

The predicted pore water pressure drastically changes before and after modification of permeability of sandy layer.

秋田自動車道 傾斜基盤上の盛土

秋田自動車道

土質定数と境界条件

ここまでの結論

1次元圧密解析は、悪くない。

でも、Terzaghiの理論に固執するのは、やめましょう。

数値解析をつかって、簡便かつ正確に計算しましょう。 ここでは、DACSAR (lizuka & Ohta, 1987) を使いましたが、 e-log p' 関係と e-log k 関係を使っているだけですから、EXCEL でも計算できると思いますよ。

そうすれば、結構うまく行きそうですよ。

どれぐらいの差があるか

5. 超軟弱地盤での いろいろな事例

大沢郷スリランカ南部道路

どういう構成モデルを使うか? なぜ?

バーチカル・ドレーン

複雑な3次元現象→水は水平方向に流れる

どうモデル化するか

どういう構成モデルを使うか? なぜ?

Test samplesThe undisturbed samples of clayTest conditions

Size of the specimen $\phi 50mm@100mm$ Test procedure:

Saturation the specimen

 \rightarrow Isotropic consolidation

 \rightarrow Undrained compression shear tests

No.	Sampling Position	Depth (m)	Consolidation stress (kN/m ²)	Axial strain rate (%/min)	
1	Saitama	GL -11.50 ~ -12.33	300	0.05	
2	Urayasu	GL -29.0 ~ -29.9	550	0.05	Fast
3	Urayasu	GL -22.0 ~ -22.7	600	0.05	(Standard)
4	Urayasu	GL -29.00 ~ -29.88	600	0.05	
5	Saitama	GL -11.50 ~ -12.33	300	0.005	10 times slower
6	Urayasu	GL -29.0 ~ -29.9	550	0.005	than standard
$\overline{\mathcal{O}}$	Urayasu	GL -22.0 ~ -22.7	600	0.005	

<u>Test cases</u>

バーチカル・ドレーン

複雑な3次元現象→水は水平方向に流れる

どうモデル化するか

The macro-element method ← Sekiguchi(1986) ... very old proposal : rational

中央大学 太田 秀樹 教授

Sand		Embanl Cru Pea	kment ist at Clay	Silty	' sand				: Obtai : Deter equ : Assur	ined di minec ations med as	irectly l by us or the s gener	by lating sorretications by lating sorretication by the second se	borator ome er al equa	ry test npiric ations
Type of soil	Depth	Thickness	$\sigma_{_{vi}}$	$\sigma_{_{\!y0}}$	K_0	М	K	v'	λ	λ_k	Λ	e_0	D	k
1,500 01 0001	[m]	[m]	[kN/m ²]	[kN/m ²]										[m/day]
Embankment			6.9	92.1	0.70	1.850	1.00	0.330	0.210	0.210	0.900	1.36	0.04300	8.60E-0
Sand mat			11.5	E = 5	1.2E+03 [k	(N/m ²]	1.00	0.330				1.36		6.00E-0
Surface crust	0.0 ~ 0.7	0.7	2.0	E = 7	.5E+03 [k	N/m ²]	1.00	0.330				8.70		3.32E-0-
	0.7 ~ 1.0	0.3	4.1	21.0	0.34	1.693	0.12	0.254	2.127	2.127	0.854	9.22	0.10494	3.32E-04
	1.0 ~ 2.0	1.0	4.6	10.4	0.34	1.693	0.19	0.254	2.127	2.127	0.867	9.52	0.10355	3.32E-04
	2.0 ~ 3.0	1.0	5.4	5.4	0.34	1.693	0.34	0.254	2.127	2.127	0.890	9.79	0.10362	3.32E-0
	3.0 ~ 4.0	1.0	6.2	6.2	0.34	1.693	0.34	0.254	2.127	2.127	0.941	9.80	0.10941	3.32E-0
Peat	4.0 ~ 5.0	1.0	7.8	7.8	0.40	1.501	0.40	0.286	1.116	1.116	0.918	5.14	0.11109	1.20E-0
	5.0 ~ 6.0	1.0	10.4	10.4	0.42	1.429	0.42	0.297	0.743	0.743	0.914	3.55	0.10444	1.20E-0
	6.0 ~ 7.0	1.0	12.9	12.9	0.42	1.448	0.42	0.294	0.841	0.841	0.948	4.29	0.10401	1.20E-04
	7.0 ~ 8.0	1.0	15.3	15.3	0.41	1.467	0.41	0.291	0.939	0.939	0.969	5.11	0.10149	1.20E-04
	8.0 ~ 9.0	1.0	17.4	17.4	0.40	1.485	0.40	0.288	1.036	1.036	0.978	5.98	0.09772	1.20E-04
	9.0 ~ 9.5	0.5	19.0	19.0	0.44	1.382	0.44	0.305	0.496	0.496	0.955	3.00	0.08582	1.20E-0
	9.5 ~ 10.0	0.5	21.0	33.8	0.55	1.155	0.70	0.355	0.287	0.287	1.136	1.80	0.08507	8.00E-0
Clay	10.0 ~ 11.0	1.0	25.3	40.7	0.55	1.155	0.70	0.355	0.260	0.260	1.149	1.64	0.08156	8.00E-0
	11.0 ~ 12.0	1.0	31.2	50.2	0.55	1.155	0.70	0.355	0.260	0.260	1.149	1.64	0.08156	8.00E-0
	10.0 ~ 11.0	1.0	25.3	E = 5	.9E+04 [k	N/m ²]	0.50	0.330				1.59		1.0E+0
Silty sand	11.0 ~ 12.0	1.0	31.2	E = 5	.9E+04 [k	N/m ²]	0.50	0.330				1.59		1.0E+00
	12.0 ~ 13.0	1.0	37.1	E = 5	.9E+04 [k	N/m ²]	0.50	0.330				1.59		1.0E+0
	13.0 ~ 14.0	1.0	43.0	E = 5	.9E+04 [k	N/m ²]	0.50	0.330				1.59		1.0E+0
	10.0 ~ 11.0	1.0	25.3	E = 5	.9E+04 [k	N/m ²]	0.50	0.330				1.59		1.0E+00
	11.0 ~ 12.0	1.0	31.2	E = 5	.9E+04 [k	N/m ²]	0.50	0.330				1.59		1.0E+0
Sand	12.0 ~ 13.0	1.0	37.1	E = 5	.9E+04 [k	N/m ²]	0.50	0.330				1.59		1.0E+00
	13.0 ~ 14.0	1.0	43.0	E = 5	.9E+04 [k	N/m ²]	0.50	0.330				1.59		1.0E+00
	14.0 ~ 15.0	1.0	48.8	E = 5	.9E+04 [k	N/m ²]	0.50	0.330				1.59		1.0E+00

Mass permeability method for modeling sand drains

Vertical direction

◆Ilorizontal direction Coefficient of permeability is converted so that time for 50% consolidation of horizontal and vertical direction are the same

: quoted from parameters of embankment at Ohsawago

Tune of soil	Depth	Thickness	$\sigma_{_{vi}}$	$\sigma_{_{\!v0}}$	K_0	М	K_i	v'	λ	$\lambda_{_k}$	Λ	e_0	D	k
Type of som	[m]	[m]	[kN/m ²]	$[kN/m^2]$										[m/day]
Embankment			6.900	92.1	0.700	1.850	1.00	0.330	0.210	0.210	0.900	1.360	0.043	8.60E-03
Platform			6.900	92.1	0.700	1.850	1.00	0.330	0.210	0.210	0.900	1.360	0.043	8.60E-03
	0.0 ~ 0.5	0.5	0.549	14.0	0.595	1.619	4.88	0.373	1.736	1.736	0.803	4.018	0.172	4.00E-03
Deat	0.5 ~ 1.0	0.5	1.648	14.0	0.595	1.619	2.39	0.373	1.736	1.736	0.817	4.209	0.168	4.00E-03
reat	1.0 ~ 1.5	0.5	2.757	14.0	0.595	1.619	1.72	0.373	1.736	1.736	0.824	4.297	0.167	4.00E-03
	1.5 ~ 2.0	0.5	3.855	14.0	0.595	1.619	1.38	0.373	1.736	1.736	0.828	4.356	0.166	4.00E-03
	2.0 ~ 2.5	0.5	5.082	14.0	0.595	1.412	1.01	0.373	0.651	0.651	0.853	2.514	0.112	4.00E-03
Pooty alow	2.5 ~ 3.0	0.5	6.435	14.0	0.595	1.412	0.90	0.373	0.651	0.651	0.855	2.529	0.112	4.00E-03
reaty clay	3.0 ~ 3.5	0.5	7.779	14.0	0.595	1.412	0.81	0.373	0.651	0.651	0.856	2.542	0.111	4.00E-03
	3.5 ~ 4.0	0.5	9.133	14.0	0.595	1.412	0.75	0.373	0.651	0.651	0.857	2.552	0.111	4.00E-03
Sand	4.0 ~ 4.5	0.5	11.18	E = 5	.9E+04 [k	N/m ²]	0.50	0.330						1.00E-03
Sand	4.5 ~ 5.0	0.5	15.29	E = 5	.9E+04 [k	N/m ²]	0.50	0.330						1.00E-03

結論

3軸試験

現場のシミュレーション \rightarrow Original Cam-Clay model 室内試験のシミュレーション \rightarrow Modified Cam-Clay model

解析

バーチカル・ドレーン \rightarrow Macro-element method

ご清聴、ありがとうございました

圧密•浸透(軟弱地盤)分野

MIDAS CONSTRUCTION TECHNICAL DOCUMENT COLLECTION

株式会社マイダスアイティジャパン 〒101-0021 東京都千代田区外神田5-3-1 秋葉原OSビル7F TEL 03-5817-0787 | FAX 03-5817-0784 | e-mail g.support@midasit.com | URL http://jp.midasuser.com/geotech Copyright[©] Since 1989 MIDAS Information Technology Co., Ltd. All rights reserved.